Читать онлайн книгу "В поисках общей теории роста человечества"

В поисках общей теории роста человечества
Анатолий Васильевич Молчанов


«Общая теория роста человечества» – так назвал свою книгу выдающийся популяризатор науки и ученый С.П. Капица. Может ли такая теория вообще быть сформулирована и если да, то на каких принципах она должна быть основана? Существует несколько моделей, претендующих на звание «Общей теории роста населения Земли», разработанных российскими учеными: С.П. Капицей, А.В. Коротаевым, А.В. Подлазовым, автором этой книги, другими исследователями. Критическому анализу всех этих моделей посвящена первая часть этой книги. Анализу псевдонаучных изысканий А.Д. Панова и А.В. Коротаева на тему сингулярности – посвящена вторая ее часть. Будет дан ответ на вопрос: может ли сингулярность человеческой истории, или сингулярность гиперболы Фёрстера, считаться также и сингулярностью Большой истории?





Анатолий Молчанов

В поисках общей теории роста человечества





Предисловие


Наше исследование касается проблем, связанных с парадоксальным, никак не вписывающемся в современную научную парадигму, гиперболическим ростом населения Земли. В кратком введении опишем этот удивительный рост – то, как он был открыт и как первоначально интерпретирован.

Прежде чем приступать к критике существующих теорий, рассмотрим вопрос о том, может ли закон квадратичного роста, согласно которому при удвоении численности прирост возрастает в четыре раза, соответствовать какому-либо реальному репродуктивному процессу. Аргументы, доказывающие невозможность такого роста как автокаталитического процесса, мы изложим в главе «Законы роста численности изолированных популяций».

Затем обсудим все логически возможные теории гиперболического роста, главное внимание уделив недостаткам тех из них, что построены на законе квадратичного роста как на причинном законе. И, наконец, в главе «Критика» представим критический анализ всех имеющихся гипотез, объясняющих феномен роста населения Земли, сосредоточившись на наиболее известных моделях Капицы, Коротаева и Подлазова. В качестве альтернативы этим редукционистским моделям рассмотрим сетевую модель, связь между численностью населения Земли и ее приростом в которой не считается причинной.

Отдельная и очень важная тема, которой мы коснемся в первой части этой книги, – это связь роста численности и развития. Она, так или иначе, присутствует во всех существующих теориях. В модели Капицы она представлена в форме демографического императива Капицы: растущая численность населения мира, согласно этому принципу, является причиной прогрессивного развития. В модели Коротаева гиперболический рост населения Земли вызывается ростом числа изобретений и открытий, которое  пропорционально численности. Модель Подлазова основывается на предположении о том, что этот аномальный рост определяется числом накопленных жизнесберегающих технологий и численностью. В сетевой модели численность населения мира в период гиперболического роста выступает в качестве количественного показателя роста и развития человечества как системы.

Во второй части этой книги будет представлен подробный анализ псевдонаучных изысканий на ниве Большой истории физика А.Д. Панова и историка А.В. Коротаева. Будет рассмотрена статья Панова  «Кризис планетарного цикла универсальной истории», а также другие его публикации, в которых Панов предсказывает «кризис-кризисов» Большой истории в первой половине XXI века с «четырехмиллиардолетней историей накопления противоречий» и связанный с этим кризисом возможный конец земной цивилизации. А также статья Коротаева  «Сингулярность XXI века в контексте Большой истории: математический анализ», в которой автор пытается дать математическое обоснование  апокалиптическим предсказаниям Панова.

Поскольку это критическое исследование носит доказательный характер, то совсем без математики не обойтись. И она, хотя и в очень незначительном количестве, здесь присутствует. Причем вполне элементарная, доступная для понимания даже десятикласснику, как максимум студенту первого курса технического Вуза. Тем не менее все математические выкладки и формулы, представленные в тесте, можно без всякого ущерба для понимания опустить.




Введение





Загадка гиперболического роста


Все человечество в целом обладает некой общностью, которую историки могли бы надеяться постичь так же глубоко, как им удается постичь то, что объединяет группы меньшего размера.

    Уильям Макнилл, «Мифстория» (Mythistory)

Все началось в начале 60-х годов прошлого столетия со статьи немецкого инженера Хейнца фон Фёрстера и его коллег П. Moрa и Л. Амиот, опубликованной в журнале «Science», которая называлась «День страшного суда: пятница 13 ноября 2026 года». Анализируя большой объем демографических данных от начала новой эры до 1960 года по методу наименьших квадратов, они выяснили, что зависимость численности населения Земли от времени хорошо аппроксимируется степенной функцией с показателем n = ?1.

Причем точность, с которой был определен показатель n, получилась очень высокой: доверительный интервал оказался равным всего одной сотой! Так впервые обнаружилось, что население Земли (не страны и народы в простой их совокупности, а все человечество в целом!) представляет собой систему, растущую в соответствии с простейшим гиперболическим законом.






Рис 1. Закон гиперболического роста населения Земли; C = 187 млрд лет — постоянная Фёрстера; Т


= 2026 г. — точка сингулярности гиперболы Фёрстера.



Статья привлекла внимание ученых всего мира. Согласно формуле на рис. 1 численность человечества 13 ноября 2026 года должна будет устремиться к бесконечности. Но не только апокалиптический результат этого исследования вызывает удивление. Уже сам факт гиперболического роста населения Земли, и мы в дальнейшем это покажем, приводит к неизбежному выводу: человечество на протяжении последних двадцати столетий представляло единую, взаимосвязанную (каждая часть – с каждой), растущую систему. Поверить в такую системность очень трудно и для ее объяснения авторами была привлечена модная в то время теория игр:



«Однако то, что может быть правильным по отношению к элементам, которые из-за отсутствия между ними адекватной коммуникации должны принимать участие в соревновательной игре с (почти) нулевой суммой выигрыша, может быть неправильным для элементов, обладающих системой коммуникации, которая дает им возможность образовывать коалиции, пока все элементы не оказываются столь сильно связаны между собой, что все население с точки зрения теории игр может рассматриваться в качестве единого игрока, ведущего игру, в которой в роли второго игрока-оппонента выступает природа»[3 - Foerster, Mora, and Amiot 1960.].


Формула Фёрстера была уточнена немецким физиком С. Хорнером. Полученная им простая зависимость описывает с удивительной точностью рост населения мира в течение многих тысяч лет [2].




Рис 2. Гипербола Хорнера: зависимость численности населения Земли от начала неолита до второй половины ХХ века.



С момента открытия закона роста населения Земли прошли десятилетия, однако загадка этого «аномального» гиперболического роста так и остается неразгаданной.



«Томас Роберт Мальтус (1766–1834) вошел в историю благодаря книге «Опыт о законе народонаселения, или изложение происшедшего и настоящего действия этого закона на благоденствие человеческого рода», анонимно опубликованной в 1798 году. В этом труде он утверждал, что численность населения, если тому не возникает помех, возрастает в геометрической прогрессии. И, как выяснилось позже, это действительно так, для всех видов от амебы до слона в условиях избытка ресурсов.

Для всех, кроме человека. Данные палеодемографов показали, что в течение последних двух миллионов лет численность населения росла гораздо быстрее. И результаты налицо: нас в десять тысяч раз больше, чем наших ближайших родственников, человекообразных обезьян. Почему? И что с этим законом произойдет дальше? Это фундаментальные вопросы мировой динамки, антропологии, демографии. Передний край»[4 - Компьютерра № 27–28 от 1 августа 2007 года.].


Гиперболического роста просто не должно было быть: колонии бактерий так не растут, популяции животных так не размножаются. Не вызывает также доверия объяснение этого роста «информационным взаимодействием всех людей Ойкумены», которое предложил С.П. Капица.

Для того, чтобы почувствовать сколь необычным, парадоксальным был этот рост на протяжении всей истории развития человечества нужно изобразить его график без применения логарифмического масштаба. Представим себе стандартную малогабаритную квартиру. Оклеим ее стену миллиметровой бумагой. Ширина 4 метра, высота 2,5 метра. Масштаб по горизонтали: один миллиметр – 1000 лет, один сантиметр – 10 000 лет, один метр – 1 миллион лет.

Масштаб по вертикали: один миллиметр – 5 млн человек (население Петербурга), сантиметр – 50 млн человек (немного меньше половины населения России), метр – 5 миллиардов человек (несколько меньше населения Земли в 2000 году – 6,5 млрд). Род Homo появился примерно 2 млн лет тому назад, его численность была в то время ~ 100 тысяч.

В момент начала неолита (8 тысяч лет до н. э.), с которого начался форсированный рост популяции, ее численность была примерно равна 10–15 миллионам. Начало координат поместим посередине стены внизу у пола, ось N направим вверх. Начинаем строить график с левого нижнего угла.

На протяжении двух метров «кривая» почти не отрывается от плинтуса и достигает в момент начала неолита высоты всего 3 мм. Затем на отрезке 11 мм она вздымается на высоту двух метров. График здесь столь крут, что его можно считать вертикалью. И далее, без всяких промежуточных стадий, эта «вертикаль» переходит в «горизонталь».

Можно ли представить себе что-нибудь более парадоксальное? (Рост населения Земли за последние 200 тысяч лет хорошо иллюстрирует ролик, который в 2016 году разместил в сети американский музей естественной истории[2 - https://www.youtube.com/watch?v=PcwCJHT4Onk (https://www.youtube.com/watch?v=PcwCJHT4Onk)].)

Примерно 2 млн лет тому назад по непонятным причинам нарушилось «прерывистое равновесие» и на сцене эволюции появился род Homo. Затем начался рост его численности. Рост этот был сначала чрезвычайно медленным. Проходили десятки и сотни тысяч лет, а скорость его, хотя и увеличивалась, но оставалась очень небольшой. К моменту начала неолита, т. е. без малого за два миллиона лет, численность популяции достигла значения равного 10–15 млн человек.

Затем что-то произошло – никто не знает в чем настоящая причина неолитической революции, но с этого момента начался взрывной рост. Всего за десять тысяч лет численность населения Земли выросла примерно в тысячу раз. Этот рост хорошо аппроксимируется гиперболой, что было установлено в 1960 году Фёрстером и его коллегами. Причем где-то к 2026 году эта гипербола должна будет «убежать» на бесконечность. Чего естественно не произойдет по причине внутренних, системных ограничений.

Они связаны с величиной среднего числа рождений в расчете на одну женщину, т. н. показателем фертильности и со средней продолжительностью жизни – различных для разных времен, стран и регионов. В связи с неизменностью закона роста на протяжении тысячелетий возникает еще один вопрос. Пока системные ограничения не вступили в силу, рост был гиперболическим – это факт.

В таком случае, если бы учет численности населения мира велся и в древние времена, то гиперболу Фёрстера могли бы обнаружить за тысячу лет до Фёрстера. А из этого следует, что гиперболический рост, связанный с развивающейся наукой, техникой, технологией, со всеми прочими достижениями ноосферы, – был не более и не менее, как запланирован.

Во второй половине XX века на фоне растущего благосостояния человечество вступило в демографический переход. За ничтожное по историческим меркам время – 0.1 мм на графике – взрывной рост численности «мгновенно» прекращается, происходит ее стабилизация на некотором предельном значении.

Поскольку демографический переход длится примерно сто лет, то в масштабе всей эволюции Homo sapiens скорость роста численности претерпевает разрыв. Но почему, пусть замедляющийся, рост не может быть продолжен? (То, что будет выход на плато, следует из демографии стран, уже прошедших свой локальный переход.)

Ведь «несущая способность Земли» может «вынести» более 15 миллиардов человек. Но нет, численность стабилизируется по разным оценкам на величине 8–12 млрд человек. Причины такой стабилизации, да еще для всего человечества в целом, совершенно непонятны. Разные эксперты – называют разные причины.

Следует отметить, что для понимания парадоксов роста нужно не только объяснить гиперболический рост. Важно понять суть трех знаковых событий (их причину): начало роста, неолитический скачок и демографический переход. Ни одна из теорий, в том числе и феноменологическая теория Капицы, ответа на эти вопросы не дает.

Особенно непонятна устойчивость гиперболического роста. История знает примеры, когда численность населения мира драматически сокращалась на десятки процентов: так, в 1343 году треть населения Европы вымерло от чумы, но быстро восстановилась до «планового» значения, задаваемого эмпирической гиперболой.

Проходили тысячелетия – человек менялся, эволюционировал как вид, развивались технологии, изменялся уклад жизни, росла ее продолжительность, а закон роста оставался неизменным. Почему? Ничем иным, иначе как чудом, это не назовешь.




Загадка начала роста и первых его этапов


Примерно два миллиона лет тому назад численность первых представителей рода Homo была порядка ста тысяч. Именно с этого момента и начался, как считает С.П. Капица, беспрецедентный гиперболический рост. Численность других, сопоставимых с человеком видов, исключая домашних животных, выше предела в сто тысяч никогда не поднимается.

Но до чего же ничтожен был этот рост на первых его этапах! За миллион лет численность первых архантропов выросла всего лишь в два раза: от 100 до 200 тысяч. За это время сменилось порядка 50 тысяч поколений, и в среднем численность популяции возрастала на два человека за поколение.

Случайные колебания этой численности представляли собой «шум», который, несомненно, многократно превосходил «полезный сигнал» в два человека за поколение. Как такой тренд сохранялся в течение миллиона лет – совершенно непонятно. Но именно благодаря ему зависимость численности от времени всегда возвращалась на «плановый» уровень, задаваемый гиперболой демографического роста.

Можно ли этот феномен чрезвычайно медленного роста объяснить появлением и развитием примитивного сознания наших предков, сообщность которых в отсутствии языка и каких-либо других средств передачи и хранения информации не представляла собой системы ни в каком смысле слова?




Загадка неолитической революции


Термин «неолитическая революция», введенный в науку английским археологом В.Г. Чайлдом в 1925 году, завоевал широкую популярность. Неолитическая революция представляла собой тот выдающийся исторический рубеж в истории человечества, когда от охоты и собирательства произошел переход к земледелию, скотоводству и оседлому образу жизни.

Земледельческий труд все прочнее привязывал человека к земле. Именно оседлый образ жизни стал причиной возникновения долговременных поселений с прочными жилищами, появлению домашних животных, письменности, института семьи, новых технологий. И, в конечном счете, он же привел и к стремительному росту численности населения мира.

Как и почему возникло земледелие, а затем и скотоводство, объясняли по-разному. В любом случае – это был сложный, многомерный процесс, причины которого во многом и до сих пор остаются непонятными. И, конечно же, этот переход нельзя объяснить одной единственной причиной, заключающейся в том, что наши предки где-то десять тысяч лет тому назад уничтожили большую часть фауны крупных животных и были вынуждены перейти к земледелию.

Не всё в концепции Чайлда и его последователей так просто, как казалось первоначально. В последнее время палеоантропологами, палеоботаниками, палеогеографами и другими специалистами были получены новые данные, позволяющие осветить проблему неолитической революции с совершенно неожиданных сторон. Вот тут-то и выяснились слабые стороны концепции Чайлда.



Во-первых, преимущества земледельческого хозяйства сказывались далеко не сразу, а наличие их у самого раннего земледелия кажется вообще сомнительным. Американский ученый М. Салинз выяснил, что ранних земледельцев ожидали гораздо более тяжкие испытания, чем бродячих охотников и собирателей, и, по его мнению, представление о каких-то преимуществах раннеземледельческого хозяйства – является «научным мифом».

Историк земледелия Ю.Ф. Новиков рассказывает, как правительство Бразилии решило обучить земледелию индейцев бороро. Их наделили семенами, орудиями и, конечно, инструкторами. Последние засеяли землю и подробно разъяснили, какие дары она им принесет. Но стоило инструкторам удалиться, как бороро выкопали и съели посаженные клубни и семена. А затем отправились в джунгли, чтобы с помощью розданных топоров добраться до высоко растущих плодов…



Во-вторых, известно, что искусственный отбор растений изменяет их облик, и эта изменчивость считается самым надежным признаком земледелия. Но изменения наступают лишь со временем, а поначалу люди разводили растения совершенно дикие! Сколько же времени нужно выращивать растение, чтобы оно приобрело культурный облик? Здесь, конечно же, не может быть и речи о какой-либо преемственности или бережном отношении к генофонду выращиваемой культуры. Видимо, процесс длился десятилетиями, может быть, столетиями, и все это время земледелие оставалось низкоэффективным.



В-третьих, ранние земледельцы питались менее разнообразно: в их рационе преобладали углеводы, и они испытывали белковое голодание, избежать которого можно было только регулярно занимаясь охотой и рыболовством. Но развивать земледелие, оставаясь охотниками и рыболовами, было невозможно. И отказ от прежнего образа жизни становится тогда еще более непонятным.



Но главная загадка неолитической революции заключается в том, что она представляла собой скачок, когда за ничтожное в сравнении с длительностью палеолита время и практически синхронно по всему земному шару подавляющая часть населения переходит к оседлому образу жизни.

«Мгновенно» появляются все ныне известные культурные растения и домашние животные. (Чисто ассоциативно это напоминает Кембрийский взрыв, когда внезапно, быстро и почти одновременно возникло множество новых биологических форм, ставших предшественниками важнейших типов современных организмов вплоть до человека.)

За все последующие тысячелетия так и не было выведено почти ничего нового! Вот выдержки из работы Ю.Н. Голубчикова, кандидата географических наук МГУ:



«На исторической шкале переход человечества к земледелию столь внезапен, что получил название неолитической революции. В это время человек приступает к выращиванию фруктов, злаков, приручает животных. В его распоряжение поступают отсутствующие в природе вещества: несамородные металлы, керамика, стекло, ткани. Тогда же появляются настоящие орудия труда и войны: лук и стрелы, лопата и соха, колесо и ткацкий станок, повозки и лодки.

Возникают первые элементы письма. Ничего равного неолитическим пшенице, рису, кукурузе, гороху, льну, хлопчатнику, сое так и не было выведено. «Сколько бы мы ни культивировали дикий ячмень, писал Николай Вавилов, так же как дикую пшеницу и овсюг, они… остаются отличными от культурных форм, что делает самую роль их как прямых родоначальников более чем сомнительной».




Подавляющее большинство культурных растений даже неизвестны в диком состоянии. Почти все возделываемые культуры уже изначально требуют искусственного полива. Далеко не всегда были успешными попытки вновь обратить в культурные сорта даже их одичалые формы. Уж если человеку взбрело на ум кормиться земледелием, то почему возделывать он начал не желуди, орехи или лесные яблоки? Окультурить их было бы проще, да и хранятся они лучше.

Еще проще выращивать и обрабатывать клубнеплодные растения: маниок, ямс, сладкие бататы. Однако не эти культуры стали главными продуктами человечества. Первое место в рационе всех времен и народов заняли рис, пшеница и кукуруза (маис). Только это были не сегодняшние высокоурожайные сорта.

Те злаки не только было трудно выращивать, но еще труднее перерабатывать. И вновь загадка: почему бы сразу не сварить кашу из зерна? К тому же весь мучительный труд хлебороба не всегда обеспечивает дневное пропитание и благосостояние даже в современном мире. Тот голод, что испытывают земледельцы, практически незнаком охотникам и собирателям. Они гораздо меньше зависят от капризов природы, их рацион разнообразней и богаче земледельческого.

В то же время именно переход к земледелию позволил человечеству резко возрасти в численности и привел к демографическому взрыву, а не наоборот. Охотники и собиратели стремятся избегать большой скученности, а земледельцы, напротив, нуждаются в постоянном жилье. В общем, в переходе человека к земледелию много неясного.

Очевидно лишь то, что он даровал человеку терпение, развил рассудок, выработал полезную привычку к труду. Питание растительной пищей смягчило характер человека, придав ему современные черты. Земледелец гораздо больше кочевника или зверолова дорожит своими полями и селениями» [15].





Загадка демографического перехода


Явление глобального демографического перехода состоит в резком увеличении скорости роста населения Земли, сменяющимся затем столь же стремительным ее падением, после чего численность стабилизируется на некотором предельном значении и далее не меняется. Начало перехода обычно относят к моменту наивысшего набора скорости роста, а конец – к наибольшему спаду его прироста. За это время, с 60-х годов XX к середине XXI века, население мира возрастет примерно в 2–3 раза. Эта величина получила название мультипликатор Шене. После демографического перехода численность населения мира стабилизируется на достигнутой величине.

Можно понять, почему гиперболический рост населения Земли должен был прекратиться как раз в тот момент, когда он был обнаружен. Но почему этот рост как таковой не будет продолжаться дальше? (То, что это так, ясно из демографической истории развитых стран, уже прошедших переход, и население которых больше не растет. Рост продолжается лишь за счет развивающихся стран.)

Почему рост населения Земли должен прекратиться сразу после демографического перехода? Ведь «несущая способность Земли» может выдержать, согласно имеющимся оценкам, значительно большую численность, чем 9-12 миллиардов человек на конец перехода. На этот счет нет единого мнения среди ученых.

С.П. Капица связывает причину перехода с ограниченностью характерных времен развития человека и человечества, М. Кремер видит причину в уменьшении рождаемости в обеспеченных семьях, А.В. Подлазов связывает переход с неспособностью жизнесберегающих технологий увеличить продолжительность жизни свыше биологического предела, А.В. Коротаев – с ростом женской грамотности и развитием системы здравоохранения.

Уникальное явление в истории человечества – не имеет объяснения! Почему переход происходит за микроскопическое по историческим меркам время и именно на том уровне развития, который достигнут на данный момент? Все это чудеса, их нельзя объяснить каким-то единственным социальным явлением.

Нельзя их объяснить и на языке синергетики, считая, что мировой демографический переход – это неравновесный переход Мир-системы к стационарному состоянию после длительного периода роста. Такой физикализм представляется совершенно недопустимым.




Загадка исторических циклов


На существование сокращающихся по закону прогрессии периодов исторического развития указывает историк И.М. Дьяконов в своей книге «Пути истории»:



«Нет сомнения, что исторический процесс являет признаки закономерного экспоненциального ускорения. От появления Homo sapiens до конца I фазы прошло не менее 30 тысяч лет, II фаза длилась около 7 тысяч лет, III фаза – около 2 тысяч лет, IV фаза – около 1,5 тыс., V фаза около тысячи лет, VI – около 300, VII фаза – немногим более 100 лет, продолжительность VIII фазы пока определить невозможно.

Нанесенные на график, эти фазы складываются в экспоненциальное развитие, которое предполагает в конце концов переход к вертикальной линии или вернее, к точке так называемой сингулярности. По экспоненциальному же графику развиваются научно – технические достижения человечества, а также, как упомянуто, численность населения Земли» [6].


С.П. Капица в своей работе [3] рассматривает одиннадцать исторических циклов, четко очерчивает границы каждого из них, подсчитывает знаменатель прогрессии и вводит понятие исторического времени. Чтобы связать демографический рост и исторические циклы им вводится системный инвариант: постоянное число людей, составлявших население Земли в течение каждого такого цикла. Однако на вопрос о причине цикличности теория Капицы ответа не дает.

Но какой бы эта причина в действительности ни была, она, несомненно, должна быть связана с мировым демографическим ростом. Действительно, завершение последнего исторического цикла и окончание демографического перехода, т. е. конец роста численности населения Земли, приходятся на конец XX – вторую половину XXI века. Почему эти процессы, длившиеся тысячелетиями и никак напрямую не связанные, упираются в один и тот же предел?

Совершенно ненужную путаницу по теме сингулярности вносит так называемая «концепция Панова». Физик ядерщик А.Д. Панов, развивая идеи антидарвиниста Г.Д. Снукса, пришел к апокалиптическим результатам, главный из которых заключается в том, что в XXI веке, кроме конца исторических циклов и завершения демографического перехода, состоится еще и кризис-кризисов с «4-х миллиардолетней историей накопления противоречий».

Этот кризис-кризисов Большой истории, по мнению Панова, является переломным и завершающим моментом всей миллиардолетней истории развития жизни на Земле. Происходит он прямо сейчас (2004 год плюс-минус 15 лет) и дословно по Панову «естественным образом обобщает сингулярность человеческой истории».

Нужно ли доказывать, что биосферный кризис, назревавший миллиарды лет и разрешающийся биосферной сингулярностью в считанные годы прямо на наших глазах – всего лишь выдумка Панова? Но можно и доказать[91 - См. «Кризис планетарного цикла А.Д. Панова – отменяется!».].

Нелепые выводы, полученные Пановым, есть результат допущенных им грубых просчетов. И, прежде всего, это физикалистский, катастрофический подход к истории, эволюции, а также навязчивое стремление уложить все реперные точки универсальной эволюции непременно в одну прогрессию.

Неловкость ситуации заключается в том, что именно Панов вводит термин «сингулярность Дьяконова», который отождествляется в его работах с несуществующей, выдуманной им биосферной сингулярностью. И сейчас уже непонятно, что он обозначает. Остается только удивляться самонадеянности и бестактности Панова, который связал результаты своих более чем сомнительных исследований с именем выдающегося историка.

Что же тогда означает сингулярность Дьяконова? (В дальнейшем будем называть ее сингулярностью Дьяконова – Капицы, т. к. С.П. Капица первым обоснованно связал ее с сингулярностью гиперболы Фёрстера.) По-видимому, за этим понятием следует оставить то смысловое значение, которое вкладывал в него сам И.М. Дьяконов, а именно: это та точка на оси времени, за которой дальнейшее сжатие исторических периодов приводит к бессмысленным результатам.

Будем пока считать, а в дальнейшем обоснуем, что она совпадает с тем моментом времени, при достижении которого эмпирические гиперболы Фёрстера и Хорнера «уходят на бесконечность», т. е. с 2022–2027 годом. Теперь, когда внесена ясность в понимание термина «сингулярность Дьяконова – Капицы», можно сформулировать еще один вопрос загадочной демографии:

Почему два процесса, продолжавшиеся тысячелетиями и напрямую никак не связанные: гиперболический рост населения Земли и сжимающиеся по закону прогрессии циклы эволюции и истории завершаются практически одновременно, а именно: конец первого цикла демографического перехода совпадает с сингулярностью Дьяконова – Капицы?




Загадки теории Капицы, несостоятельность теории Коротаева


Важнейшим этапом в развитии теоретической демографии стала феноменологическая теория, предложенная С.П. Капицей [3,4]. От эмпирического закона роста численности населения Земли от времени был сделан переход к простому дифференциальному уравнению, описывающему зависимость скорости роста от численности:






Рис. 1. Уравнение Капицы; ? = 42 года, K = (C/?)


= 67000 – безразмерная константа роста.



Из этого закона квадратичного роста скорости роста численности от численности вытекает закон гиперболического роста численности от времени. Анализируя процесс в области демографического перехода и вблизи нее, когда гиперболический рост еще не закончился, С.П. Капица немного модифицировал уравнение, описывающее рост, и ввел две константы ? и К вместо одной С (постоянной Фёрстера).

В результате удалось получить хорошую аппроксимацию зависимости численности населения мира от времени N(t) для всей истории развития человечества на протяжении более четырех миллионов лет, включая демографический переход. Были получены новые результаты, касающиеся циклов исторического развития, подсчитано количества людей, когда-либо живших на Земле. Кроме того, был предложен принцип демографического императива, согласно которому рост численности населения Земли на протяжении всей истории развития человечества не зависел ни от каких ресурсов, а определялся только самой этой численностью.

Феномен квадратичной зависимости скорости роста численности населения мира от численности С.П. Капица объясняет прямым выражением информационной природы развития, присущей только человеку. Константа К = 67000 – это численность той группы людей, которая задает характер т. н. коллективного взаимодействия Капицы. Константа ? = 42 года – «время, определяемое внутренней предельной способностью системы человечества и человека к развитию», согласно определению, которое дал этому масштабу времени С.П. Капица.

Но согласно существующим представлениям человечество долгое время не представляло собой системы, и рост населения Европы, Америки, Азии… происходил в основном независимо. Как это можно объяснить, исходя из теории Капицы?



«Вплоть до самого недавнего времени (а в особенности до 1492 г.) человечество не представляло собой системы ни в каком реальном смысле, ибо, например, рост населения таких регионов, как Старый Свет, Новый Свет, Австралия и Тасмания или Гавайские острова происходил практически полностью независимо друг от друга. Так, представляется вполне очевидным, что бурные демографические процессы, происходившие в I тыс. н. э. в Евразии, не оказали абсолютно никакого влияния на синхронную демографическую динамику, скажем, обитателей Тасмании (да и обратное влияние также было просто нулевым).

Давно ли по историческим меркам европейцы и азиаты узнали о жителях Западного полушария? Как такое человечество могло быть единым информационным полем? Вряд ли Капица допускает, что песни бардов и рассказы стариков у семейного очага при отсутствии спутниковых ретрансляторов звучали на всю Ойкумену. А если бы и звучали, то на языке, непонятном для подавляющей части Ойкумены» Ю.В. Шишков, «Демографические похождения физика».


Какова природа введенных постоянных? Какой масштаб времени задает постоянная ?? Она характеризует человека, но человек за два миллиона лет эволюции прошел путь от полуобезьяны до субтильного интеллигента, а постоянная, описывающая рост численности, не изменилась.

Почему длительность демографического перехода равна 2?? – Нет ответа. А безразмерная константа К, столь близкая к круглому числу 2


, в чем ее смысл? Размер группы, в которой проявляются коллективные признаки сообщества людей? Но для какого момента исторического времени? – Вопрос без ответа.

Само же уравнение предполагает пропорциональность скорости роста населения Земли числу связей между группами людей численностью 67 тыс. каждая. Однако, если каждая из постоянных К и ? имеет фундаментальный смысл, а не является величиной, полученной в результате статистического усреднения, то это уравнение есть не что иное, как констатация равенства приращения численности за время ? – числу связей между группами людей, численностью 67 тыс. каждая, умноженному на два.

И это равенство справедливо на огромном промежутке времени, не зависит ни от уровня развития самого человека, ни от уровня развития его технологий, ни от множества прочих факторов. Это самое большое чудо из всех рассмотренных.

Теория Капицы привлекла внимание ряда отечественных ученых, но все попытки ее развить, представить собственное видение проблемы отмечены печатью деградации. Так, А.В. Подлазов считает введение постоянных К и ? ошибочным:



«При этом уравнение (4), на наш взгляд, может быть про интерпретировано единственным образом: рост численности человечества определяется парным взаимодействием городов! Явственно присутствующий в этом положении элемент мистики обусловлен совершенно искусственным выделением одного из уровней иерархии организации общества.

Людские объединения в высшей степени масштабируемы и способны к самодостаточному существованию при численности как в десятки, так и миллионы человек. Таким образом, расщепление величины C на две константы K и ? является ошибочным и вызвано отсутствием понимания физического смысла выражения, стоящего в правой части уравнения…» [5].


А. Коротаев, Н. Комарова, Д. Халтурина [7], реставрируя модель М. Кремера с «мальтузианско-кузнецианским» уклоном, подгоняют свою «компактную» систему дифференциальных уравнений к желаемому результату. А именно: скорость роста численности населения мира пропорциональна квадрату этой численности. Константы Капицы К и ? в эту систему не входят, возвращена постоянная Фёрстера. Вся логика построена на рассуждениях вида А ~ В, А ~ С, следовательно, А ~ В·С. Исходные линейные зависимости считаются очевидными:



«Модель М. Кремера дает этому очень убедительное объяснение (хотя сам М. Кремер и не показал этого в достаточно ясном виде). А объяснение это заключается в том, что рост численности населения мира с 10 до 100 млн человек подразумевает, что и уровень развития жизнеобеспечивающих технологий вырос приблизительно в десять раз (так как он оказывается в состоянии поддержать существование на порядок большего числа людей). С другой стороны, десятикратный рост численности населения означает и десятикратный рост числа потенциальных изобретателей, а значит, и десятикратное возрастание относительных темпов технологического роста.

Таким образом, абсолютная скорость технологического роста вырастет в 10*10 = 100 раз… А так как N стремится к технологически обусловленному потолку несущей способности Земли, мы имеем все основания предполагать, что и абсолютная скорость роста населения мира (dN/dt) в таком случае в тенденции вырастет в 100 раз, то есть будет расти пропорционально квадрату численности населения» [7].


Изобретательская теория Коротаева и соавторов требует большого числа незначительных изобретений. На самом же деле новационный (и инновационный) процесс устроен иначе: все действительно значимые изобретения, открытия немногочисленны и представляют собой цепочку, в которой каждое последующее звено вытекает из предыдущего. Для Мир-системы в XIX и XX веках – это так называемые «базисные инновации» (по Л. Нефедову), которые в течение последующих десятилетий играют роль локомотива мировой экономики.

Например, в начале прошлого века Планк открывает, что процессы излучения и поглощения электромагнитной энергии нагретым телом происходят дискретно, а Эйнштейн вводит понятие кванта излучения. В двадцатых годах создается квантовая теория; в тридцатых – физика твердого тела; в конце сороковых изобретен первый транзистор; в начале шестидесятых – первая интегральная микросхема.

В конце семидесятых – первый твердотельный компьютер; в начале XXI столетия сотовый телефон становится средством массовой коммуникации. Вряд ли кто-нибудь будет возражать, что изобретение сотовой связи очень сильно повлияло на социум, в том числе и в плане роста его численности.

Но Макс Планк сделал свое открытие в известной мере случайно, оно могло быть совершено другим исследователем как раньше, так и позже отмеченного момента времени. И если сдвигать это первое звено во времени, то с ним сдвигается и вся цепочка. Именно так, а не по Коротаеву, когда мелкие инновации «мгновенно» поднимают потолок несущей способности Земли, устроен научно-технический, социальный и демографический прогресс.

В статье «Человечество подошло к пределу своего роста» А.В. Коротаев и соавторы с удивлением замечают, что модель Кремера заводит их в тупик. Ведь после демографического перехода рост численности населения Земли должен полностью прекратиться, а значит прекратится и всякий творческий процесс. Творчество больше не нужно? – Вопрошают они. А, может, все-таки модель Кремера неверна? Ведь сам Кремер ее так до конца и не сформулировал. Что-то, видимо, его удержало.

Развивая «мальтузианско-кузнецианский» подход, авторы [7] формулируют задачу на языке кибернетики и вводят в рассмотрение нелинейные обратные связи между основными субсистемами «Мир-системы». Но все попытки объяснить как гиперболический рост, так и демографический переход положительными и отрицательными обратными связями в «Мир-системе» (для человечества в целом!) чисто умозрительны, разноплановы и неубедительны. Можно ли поверить в то, что «положительная обратная связь второго порядка», в случае роста численности народонаселения, столь сбалансированна и точна, что погрешность в формуле Фёрстера для показателя степенной функции составляет всего один процент? (Точнее, n = -0,99 ± 0,009).

После демографического перехода уже два контура обратной связи, положительной и отрицательной, т. е. целая система автоматического регулирования, удерживают численность на фиксированном уровне. При этом речь не идет об исчерпании каких бы то ни было ресурсов. Несущая способность Земли может выдержать значительно большую численность. И совершенно непонятно какие такие ограничения механизма развития начинают вдруг играть доминирующую роль.




Законы роста численности изолированных популяций





Введение


Популяция – это совокупность особей одного вида, обладающая общим генофондом и проживающая на общей территории. Она является элементарной генетической единицей вида, первой надорганизменной биологической системой. Считается, что любая популяция способна к неопределенно долгому самостоятельному развитию.

Биотическим потенциалом вида называется показатель скорости роста численности особей этого вида при отсутствии ограничивающих факторов. Совокупность же таких ограничивающих рост популяции факторов называется сопротивлением среды.

Состояние равновесия между биотическим потенциалом вида и сопротивлением среды, поддерживающее постоянство численности популяции, называют популяционным гомеостазом. При его нарушении возникают колебания численности. Различают периодические и непериодические колебания численности популяции.

Обычное, нормальное состояние популяции – это гомеостаз с неизменной численностью, который поддерживается отрицательными обратными связями, обеспечивающими такой гомеостаз. Но в редких случаях численность популяции меняется и за короткий промежуток времени может значительно возрасти или уменьшиться. Этот редкий случай нарушения гомеостаза только и будет здесь нас интересовать.

Причем нами будут рассмотрены только законы роста: законы, по которым растет численность изолированной популяции, т. е. популяции более или менее отделенной в пространстве от других аналогичных совокупностей того же вида. Эти законы представляют для нас интерес в связи с законом роста численности населения Земли.




Идеализации


Построение математической модели какого-либо объекта, явления неизбежно требует принятия некоторых упрощений, идеализаций. Чем больше идеализаций, тем проще модель, тем удобней с ней работать и тем уже спектр явлений, который она способна описать.

С другой стороны, идя по пути усложнения модели, нужно иметь в виду, что даже максимально сложная, «все учитывающая» модель все равно остается всего лишь моделью и неспособна полностью описать явление, зато способна перенести львиную долю внимания исследователя с самого явления на абстрактный математический аппарат, его описывающий.

Поэтому в математическом моделировании существует золотая середина степени усложнения. В математической экологии эффективны простые модели с большим количеством идеализаций. Рассмотрим идеализации для модели роста изолированной популяции, т. е. такой популяции, взаимодействия в которой возможны только между представителями данной популяции [12]:



1. Постоянство внешних условий, т. к. прежде чем исследовать роль внешних воздействий следует проанализировать свойства идеальной, изолированной популяции, на динамику численности которой влияют лишь биотические факторы, причем только те из них, что связаны с внутривидовой деятельностью. Под постоянством внешних по отношению к растущей популяции условий будем понимать также и независимость роста (при прочих равных условиях) от того, на каком участке шкалы физического времени он наблюдается. В уравнениях такого роста не должно, следовательно, явным образом присутствовать время, т. е. они должны быть автономными.



2. Целочисленное число особей популяции заменяется для удобства на непрерывную, действительную величину.



3. Рассматриваемая популяция считается однородной, т. е. полностью пренебрегается ее половой, возрастной, генотипической и какой-либо другой структурированностью[92 - Для дальнейшего представляется важным отметить, что население Земли в целом, при том, что все мы принадлежим к одному виду, – этому условию не удовлетворяет. Дело в том, что человечество нельзя считать однородной массой с единым для всех ее частей естественным приростом. В действительности – это конгломерат популяций, образованный различными как по численности, так и по естественному приросту составляющими. (Коэффициент естественного прироста в разные времена, для разных народов мог различаться в разы, поэтому никакое его усреднение по всей массе человечества не может считаться удовлетворительным.) Даже если допустить, что численность каждого народа, этноса будет расти экспоненциально – из этого вовсе не следует, что численность человечества также будет расти экспоненциально.].



4. Рост численности любой популяции есть, строго говоря, случайный процесс, который должен описываться на языке теории вероятностей. Но при исследовании изменения численности популяций с большим числом членов естественно описывать эти изменения на языке средних величин.



5. В случае неперекрывающихся поколений в дискретных моделях принимается синхронное размножение у всех организмов при достижении определенного возраста. Что хотя и не соответствует действительности, позволяет упростить математический аппарат, причем без отрицательного влияния на результат. Момент появления новой особи в непрерывных моделях считается равномерно распределенным на отрезке времени, равном среднему времени жизни особи.



6. В случае перекрывающихся поколений скорость изменения численности может определяться численностью не в текущий, а в некоторый предшествующий момент времени. Динамика изменения численности описывается здесь уравнениями с запаздывающим аргументом. Такое запаздывание, в случае если оно сравнимо или превосходит характерное время системы, может приводить к колебаниям численности и даже к резонансам: колебаниям с нарастающей амплитудой. Пренебрежение таким запаздыванием – еще одна часто принимаемая идеализация.



7. Исследуемая система предполагается либо локальной, т. е. имеющей достаточно малые размеры (для таких систем понятия численности популяции и ее плотности являются синонимами), либо постулируется полное перемешивание, когда особь за время жизни успевает побывать на всей территории обитания популяции. Для человеческого общества предполагается его информационная связность на всем протяжении роста. При исследовании локальных или сосредоточенных сообществ изучается исключительно временна?я динамика. На самом деле сосредоточенных сообществ не существует, а реальная протяженность ареала обитания популяции может в сотни и тысячи раз превышать величину перемещения особи за поколение. Модели пространственно-распределенных сообществ включают анализ как временно?й, так и пространственной организации этих сообществ. Они описываются уравнениями типа диффузия-кинетика, решение которых зачастую сопряжено с непреодолимыми математическими трудностями.



8. Рост численности изолированной популяции предполагается свободным, никем и никак не управляемым ростом, происходящим в естественных природных условиях.


* * *

Условно все идеализированные модели биологических систем можно разделить на три типа: регрессионные, качественные и имитационные [11].



А. Регрессионные зависимости – это не более, чем формулы, описывающие связь различных характеристик системы, которые при этом не претендуют на какой-либо каузальный, физический или биологический смысл. Для построения регрессионной модели достаточно статистически достоверных наблюденных корреляций между переменными или параметрами системы.



Б. Качественные (базовые) модели. В любой науке существуют простые модели, которые поддаются аналитическому исследованию и обладают свойствами, позволяющими описывать целый спектр природных явлений. Их задача качественно описать систему, в данном случае растущую изолированную популяцию. Базовые модели обычно представляют собой системы дифференциальных или разностных уравнений относительно небольшой размерности, допускающие аналитическое и качественное компьютерное исследование. Эти модели позволяют ответить на вопросы: возможны ли в системе колебания, переключения режимов функционирования, пространственно-неоднородные решения, квазистохастическое поведение. При этом важно понимать, что истинные причины наблюдаемого поведения популяции, особенности роста ее численности могут никак такой моделью не отражаться.



В. Имитационные модели. По меткому выражению Р. Шеннона имитационное моделирование – это нечто промежуточное между искусством и наукой. Суть его заключается в исследовании сложной математической модели с помощью вычислительных экспериментов и обработки результатов этих экспериментов. Как правило, создатели такой имитационной модели пытаются максимально использовать всю имеющуюся информацию об объекте моделирования как количественную, так и качественную. При этом модель может получиться разной у разных авторов, поскольку точные формальные правила ее построения отсутствуют.



Целью нашего исследования является построение качественной (базовой) обобщенной модели роста численности изолированной популяции с учетом всех обозначенных здесь идеализаций.




Каузальный анализ законов роста


Каузальный анализ описывает явление на языке причинно-следственных связей. В его основе лежит стремление понять это явление на основе логики типа: «X вызывает Y». Факторы, которые вызывают какие-то изменения, называются независимыми переменными, в то время как переменные, изменяющиеся под действием этих факторов, называются зависимыми.

В общем случае присутствие причинно-следственных связей означает, что наличие изменений меняет вероятностные характеристики последствий. В чем задача каузального анализа роста численности популяции? Она заключается в поиске причин, по которым ее численность растет по тому или иному закону.

Самый простой в каузальном смысле рост – это экспоненциальный рост. Закон экспоненциального роста считается первым законом экологии популяций. Его можно уподобить первому закону Ньютона в механике. Когда на тело не действуют никакие другие тела – оно сохраняет состояние покоя или равномерного и прямолинейного движения. (Скорость растет, убывает, меняется по направлению только тогда, когда на тело действует сила.) Когда на растущую в условии изобилия ресурсов изолированную популяцию не оказывают воздействия никакие внутренние или внешние ограничения – она растет экспоненциально. Отклонение от экспоненты и, в частности, неизменная численность возможно лишь при наличия сопротивления (ускорения) со стороны среды обитания.

Причина экспоненциального роста без смертности (для делящихся микроорганизмов) заключена внутри черного ящика процесса репродукции элементарной ячейки популяции. И прирост численности здесь всегда будет пропорционален самой численности. Для популяций животных (многоклеточных организмов) разность между приростом численности за счет рождаемости и ее убылью по причине смертности за единицу времени – также пропорциональна самой численности.

В обоих случаях – это строгое равенство при выполнении принятых выше идеализаций, т. к. рост популяции здесь представляет суперпозицию не оказывающих взаимного влияния процессов. И если, скажем, увеличить численность в два раза, то и ее естественный прирост также должен возрасти в два раза. Поэтому экспоненциальный рост популяции, происходящий в естественных природных условиях, информационно и каузально прост и его можно считать причинно-самодостаточным, а сам закон экспоненциального роста – причинным.

Причинным в том смысле, что рост популяции здесь может быть представлен как автокаталитический, самоускоряющийся процесс, причиной которого является положительная обратная связь между численностью и естественным приростом, природа которой заключена в простом росте (по закону геометрической прогрессии на последовательности интервалов равной длительности) некоторого числа параллельных, в первом приближении не взаимодействующих элементарных продукционных процессов.

Самодостаточным в том смысле, что никаких других причин у этого роста кроме тех, что заключены внутри черного ящика процесса репродукции элементарной составляющей популяции – здесь нет. Если же учитывать влияние взаимодействий между членами популяции, то линейное уравнение экспоненциального роста необходимо трансформировать в нелинейное.

Примеры таких уравнений мы приведем ниже. При этом прирост численности на особь, элементарную ячейку размножающейся популяции, будет зависеть от ее общей численности.


* * *

Возможны два каузальных подхода при описании такого нелинейного роста.



1. В первом подходе причина роста ищется исключительно в связях между членами популяции, при этом полностью пренебрегается составляющей прироста без учета взаимодействий, т. е. индивидуальной способностью к размножению элементарной составляющей популяции, которая при отсутствии взаимодействий вызывает экспоненциальный рост. Так, в моделях роста численности населения Земли полагают, что мировой естественный прирост пропорционален квадрату полной численности населения Земли при любых значениях этой численности.



2. Во втором подходе прирост ищется в виде суммы двух составляющих, первая из которых отвечает за рост без взаимодействий. Вторая же составляющая естественного прироста, положительная или отрицательная, возникает по причине воздействия на него со стороны внутрипопуляционных связей.

Такой дополнительный положительный прирост за счет рождаемости, возникающий по причине взаимодействия между членами популяции, возможен лишь при том условии, что биотический потенциал системы полностью не исчерпан, т. е. если существует возможность увеличить приплод с особи за время ее жизни.

Другая часть такого дополнительного прироста возникает за счет изменения (положительного или отрицательного) уровня смертности. Оба эти воздействия так трансформируют, искажают естественный экспоненциальный рост, что превращают его, например, в рост логистический или даже в гиперболический.



Приведем примеры. Если рассматривать размножение колонии микроорганизмов в максимально благоприятных условиях, то никакие взаимодействия между этими организмами ускорить этот, уже и без того максимально быстрый экспоненциальный рост, очевидно, не могут, и рост будет экспоненциальным, таким же как и при отсутствии взаимодействий. Но могут его замедлить, если, например, среда обитания не безгранична и плотность популяции будет расти. Тогда закон роста будет нелинейным, например, логистическим.

Если же рассматривать рост численности населения Земли и исходить, к примеру, из модели Коротаева (где экспоненциальной составляющей прироста пренебрегается), то связи между членами социума, порождающие полезные инновации и способствующие их распространению на всю Мир-систему, преобразуют простую положительную обратную связь между естественным приростом и численностью в ПОС второго порядка, которая работает при любых численностях, во все времена и провозглашается единственной причиной гиперболического роста.


* * *

Второй подход представляется более логичным, т. к. величину связи между особями растущей популяции вряд ли можно считать неизменной на протяжении всего роста. Здесь разумно предположить, что зависимость эта будет тем сильнее, чем больше общая численность (плотность) популяции. Когда же эта численность невелика – рост должен быть экспоненциальным. Иначе говоря, если в нелинейном уравнении, описывающем рост популяции, численность устремить к нулю, оно должно превращаться в линейное уравнение Мальтуса.

Такой рост, подчиняющийся нелинейному закону, будет каузально более сложен, чем экспоненциальный рост, поскольку его причина заключена как в индивидуальной способности к размножению каждой элементарной репродуцирующей себя ячейки популяции, так и во взаимодействиях между ее членами. И такой нелинейный закон роста может быть назван причинным лишь в том случае, если он полностью определяется нелинейной обратной связью между численностью и естественным приростом.

В отличие от причинно-самодостаточного закона экспоненциального роста (dN/dt = aN) здесь уже недостаточно просто записать уравнение роста, нужно еще дать описание, объяснение тем нелинейным обратным связям, которые этот рост вызывают или на этот рост влияют. В этом сложность нелинейного роста и его каузального анализа.

Обычно, когда говорят о растущей изолированной популяции, то имеют в виду свободный рост, т. е. рост никем и никак не управляемый, не испытывающий никаких внешних воздействий и происходящий в естественных природных условиях. Причины свободного роста изолированной популяции заключены в двух процессах: процессе размножения каждой элементарной ячейки популяции и процессе взаимодействия между всеми этими ячейками.

Если же существуют какие-то факторы, целенаправленно воздействующие на рост, т. е. как-то его изменяющие, регулирующие, то такой рост следует считать управляемым. Примером управления ростом с помощью изменения его условий служит процесс выращивания микроорганизмов в питательной среде, где экспериментатор может менять температуру, состав питательной смеси и тем самым влиять на скорость деления микроорганизмов. Т. к. характерное время деления здесь мало, можно исследовать этот рост в широком диапазоне условий.

Другой пример – рост численности домашних животных. Здесь воздействие может варьироваться в широких пределах: от простой защиты от хищников и обеспечения кормом на пастбищах до постройки специально организованных ферм, где создаются все необходимые условия для роста и размножения. Вмешиваясь в ход природных процессов, человек может остановить исчезновение редких животных и восстановить их былую численность.

Все это примеры внешнего, не автономного воздействия на рост популяции. Но существует еще одна возможность: управление ростом изнутри, через связи, существующие между членами популяции. И здесь примером может служить рост человеческих сообществ. Можно целенаправленно с помощью специально созданных программ, без всякого оружия, только информацией – свести на нет, уничтожить целый народ.

И наоборот, используя разнообразные программы жизнесбережения, работающие изнутри, повысить естественный прирост целого этноса. В дальнейшем мы покажем, что если численность изолированной рассредоточенной популяции и скорость ее роста связаны нелинейно, то причиной такой связи может и не быть ПОС между приростом и численностью (N<—>?N/?t) или ООС между этими величинами, а закон, их связывающий, может и не быть законом причинным. Такой нелинейный закон роста популяции может описывать всего лишь функциональную, непричинную связь между ее численностью и естественным приростом. Т. е. представлять собой не более, чем регрессионную зависимость, не претендующую на какой-либо каузальный смысл.


* * *

Итак, рост популяции может быть как свободным, так и управляемым. Управляемый рост отличается от свободного наличием управляющей системы, стоящей над популяцией и способной изменять ее свободный рост в тех границах, которые определены биотическим потенциалом популяции и сопротивлением среды.

Например, превратить естественный экспоненциальный рост в рост гиперболический. Поскольку управляемый рост может быть осуществлен только достаточно сложной системой управления, как минимум обладающей памятью, то момент детерминации может быть расположен здесь позднее во времени того момента, когда происходит детерминированное событие.

Понимать это надо так: управляющая система непрерывно контролирует текущую численность популяции и воздействует на внутрипопуляционные связи таким образом, чтобы сделать максимально вероятной последовательность ранжированных событий, каждое из которых заключается в достижении численности популяции в определенный момент времени в будущем некоторого предустановленного значения.

Задача каузального анализа в таком случае заключается в том, чтобы найти целевой, телеологический каузальный закон, управляющий ростом, и механизм его реализации.




Модель степенного роста, или рассказ о том, как не растут популяции


Закон степенного роста (убывания) какой-либо величины во времени – это зависимость вида y = C(t – t


)


, где показатель n не равен нулю или единице и может быть положительным, отрицательным, целым или дробным.

Может ли численность роста какой-либо популяции на каком-то этапе своего роста описываться степенным законом? Это возможно лишь при том условии, что на этом этапе прирост численности за небольшой промежуток времени будет пропорционален некоторой степени численности, причем показатель этой степени не должен быть равен единице.

В таком случае вопрос можно сформулировать так: может ли скорость роста численности популяции выражаться в виде степенного закона (3) рис. 1?






Рис. 1. Степенной и экспоненциальный законы роста численности популяции.



При разных значениях параметра m закон (3) описывает параболический, экспоненциальный и гиперболический рост. Возьмем для определенности значения m = 0, 1, 2, которые соответствует трем наиболее часто встречающимся в природе законам: линейному, экспоненциальному и гиперболическому.

Из них только закон экспоненциального роста имеет встроенный масштаб времени или характерное время удвоения численности популяции, что ясно уже из соображений размерности, т. к. показатель экспоненты представлен в виде произведения константы ?, умноженной на время t.

Следовательно, величина обратная ?, определяющая этот встроенный масштаб времени, должна иметь размерность времени, поскольку в показателе экспоненты может стоять только безразмерная величина.

Термин «встроенный масштаб времени», возможно, является не совсем удачным, поскольку закон экспоненциального роста не содержит в себе какого-то единственного масштаба, в котором можно измерять время протекания процесса. А содержит постоянную времени через которую этот масштаб: время удвоения численности, какое-то другое характерное время, может быть выражен.

Природа экспоненциального роста такова, что если взять произвольную точку на оси времени и откладывать от нее интервалы произвольной, но равной длительности, то численность популяции на последовательности этих интервалов будет расти по закону геометрической прогрессии.

Что в корне отличает его от степенного параболического или гиперболического роста. Для которых не существует встроенного масштаба времени – неизменного времени удвоения численности, т. к. для них это время либо возрастает, либо убывает.

И которые в силу этой своей особенности не могут описывать рост какой-либо популяции, при том условии, конечно, что рост этот определяется причинным законом, т. е. порождается нелинейной положительной обратной связью (НПОС) между численностью и ее естественным приростом. НПОС, причины которой полностью определяются связями (и только связями, а не индивидуальной способностью к размножению) между членами популяции и которая может быть понята? и описана.


* * *

В самой природе степенного роста популяции есть что-то неестественное: трудно себе представить, чтобы прирост численности был пропорционален не самой численности, а какой-то ее степени. При экспоненциальном росте прирост численности популяции пропорционален самой численности. Если удвоить численность, то за этот же промежуток времени удвоится и ее прирост.

Но если прирост зависит от численности по степенному закону – это не так. В таком случае можно попробовать постулировать зависимость коэффициента прироста численности от численности по степенному закону. Открытие закона гиперболического роста населения Земли описывает Л.М. Гиндилис:



«Довольно очевидно, что абсолютный прирост населения должен быть пропорционален численности населения. Если взять какой-то однородный в демографическом отношении регион, то из двух пунктов этого региона, прирост будет выше там, где больше численность населения. Точно так же, чем больше численность населения в момент времени t, тем больше и прирост населения в этот момент. Статистика показывает, что за небольшое время dt, прирост будет равен dN = ?Ndt. «…»

«В 1960 году в журнале «Science» была опубликована статья трех авторов Х. Фостера, П. Мориа и Л. Эмиота, которая называлась «День страшного суда пятница 13 ноября 2026 года». Используя тщательно отобранные статистические данные авторы показали, что относительный прирост населения растет так же быстро, как само население. Чем объясняется такая зависимость, остается пока неясным». «…»





Рис. 2. Пропорциональность коэффициента мирового естественного прироста общей численности народонаселения позволяет объяснить гиперболический рост населения Земли.



«…Сокращение смертности в целом по земному шару перекрывает уменьшение рождаемости в отдельных (особенно развитых странах), так что естественный прирост на Земле возрастает со временем. Менее ясно почему он растет столь же стремительно как само население, что собственно и приводит к гиперболическому закону. Это пока остается загадкой» [22], стр. 471.


Здесь Л.М. Гиндилис допускает две серьезные ошибки. Первая заключается в том, что, отождествляя закон гиперболического роста численности населения мира с причинным степенным законом квадратичного роста (который утверждает, что причина гиперболического роста заключается в ПОС второго порядка между скоростью роста и численностью), он приписывает Фёрстеру открытие, которого тот не совершал.

Исследование Фёрстера и его коллег касается только зависимости численности от времени, которая была получена при обработке большого количества данных по методу наименьших квадратов. Как в точности, если не говорить о средних величинах, зависела при этом скорость роста численности от численности и от времени, и как зависел коэффициент прироста от численности – остается неизвестным.

На самом деле эмпирическая зависимость численности от времени, открытая Фёрстером и его коллегами, могла быть получена и при другом, отличном от закона квадратичного роста, дифференциальном причинном законе роста. Неясно даже может ли вообще гиперболический рост населения мира, учитывая непонятную, парадоксальную системность человечества, без которой он никогда бы не проявился, быть объяснен с помощью законов с простой преддетерминацией. Связь между скоростью роста и численностью в таком случае в период гиперболического роста могла и не быть причинно-следственной.

Вторая ошибка вполне логична и заключается в том, что автор подменяет здесь проблему гиперболического роста численности населения Земли на проблему линейной зависимости коэффициента мирового естественного прироста от численности.

Если коэффициент естественного прироста для каждого села, города, страны, региона – един и пропорционален численности населения мира: ? = ?


N, то сложив эти приросты (dN


= ?


N*N


) по всему земному шару, и вынеся ?


N за скобку, получим закон квадратичного роста dN/dt = ?


N(N


+…+ N


) = ?


N


, а проинтегрировав его – гиперболу Фёрстера.

Таким образом, Л.М. Гиндилис одним махом решает все проблемы, связанные с аномальной системностью человечества, над которыми безуспешно бьются все исследователи гиперболического роста. Беда здесь только в том, что такая зависимость коэффициента глобального естественного прироста от численности представляется совершенно невозможной по следующей причине:

В таком случае приходится постулировать единый и синхронно растущий по закону простой пропорции коэффициент прироста для населения всех стран и народов, когда-либо населявших Землю, т. е. растущий пропорционально не численности каждого такого выделенного народа или страны, а мира в целом, что представляется совершенно немыслимым.

Следовательно, вопрос здесь не в том, почему относительный глобальный естественный прирост пропорционален численности населения мира. Это неправильно поставленный вопрос. Само представление о том, что гиперболический рост населения Земли может быть объяснен с помощью причинного степенного закона квадратичного роста является ошибочным.


* * *

Рост популяции, выраженный степенным или каким-либо другим нелинейным законом, не может быть полностью описан лишь с помощью самого этого закона, т. к. такой закон сам по себе не может объяснить информационную связность растущей популяции, взаимозависимость роста всех ее частей.

Кроме того, рост популяции, происходящий по степенному закону, имеет и свои, специфические, присущие только ему особенности, не позволяющие принять этот закон в качестве причинного закона для описания роста какой-либо реально существовавшей в природе популяции. Перечислим все эти аномальные особенности параболического и гиперболического роста:



1. Оба они имеют особую, выделенную на оси времени точку: момент начала или завершения роста, численность популяции в которой равна нулю для параболического и бесконечности для гиперболического роста. Поскольку такое в реальности невозможно, да и само наличие таких особых точек на шкале роста должно иметь какое-то объяснение, следует признать, что непрерывная модель степенного роста как процесса с простой преддетерминацией изначально содержит в себе внутренние противоречия.



2. Хотя численность популяции при степенном, так же как и при экспоненциальном росте изменяется по закону геометрической прогрессии, но рост этот происходит на последовательности интервалов времени расширяющихся (параболический рост) или сжимающихся (гиперболический рост) по закону прогрессии от/к особой точки/е этого роста.

Это увеличение (уменьшение) времени удвоения численности популяции выполняется при отсчете времени (прямом или обратном) только от этой точки и ни от какой другой, что еще раз подчеркивает ее выделенность. Такой рост, в отличие от экспоненциального роста, является существенно неоднородным во времени процессом. Если взять два равных отрезка времени, различающихся своим положением на шкале роста, то рост численности, в том числе и размножение каждой единичной особи популяции, будет происходить на них совершенно по разному.

Рассмотрим, например, простой гиперболический рост на последовательности отрезков времени, сокращающихся по закону прогрессии со знаменателем 1/2 (так росло население Земли). На каждом таком отрезке время удвоения численности уменьшается вдвое по сравнению с предыдущим, что говорит о том, что особи популяции будут здесь более плодовитыми и/или потери от смертности меньшими[93 - Плодовитость может расти, смертность падать, но почему закон, по которому это происходит, именно такой, какой он есть и почему этот закон остается неизменным в течение длительного промежутка времени?].

Что совершенно немыслимо для любой популяции, когда-либо существовавшей в природе, время удвоения численности которой в благоприятных и неизменных условиях есть всегда величина постоянная. Поскольку это время по каким-то причинам при каждом таком удвоении численности уменьшается ровно в два раза, то это должно иметь какое-то объяснение; иначе говоря, закон степенного роста, в отличие от закона экспоненциального роста, законом причинно-самодостаточным уже не является. Что это означает?

Это означает то, что в отличие от естественного экспоненциального роста, причина которого заключена в положительной обратной связи между численностью и ее естественным приростом (природу которой не нужно никак дополнительно обосновывать), причиной аномального степенного роста для автономно растущей, никем и никак не управляемой сосредоточенной популяции являются связи (взаимодействия) между членами этой популяции, влияние которых на рост численности требует специального исследования.



3. Закон степенного роста – закон нелинейный и потому прирост численности на особь (элементарную репродуктивную ячейку популяции), за некоторый промежуток времени ?t, равен ?N/N = ??tN


и зависит от полной численности популяции, что предполагает при отсутствии четко выраженных границ среды обитания популяции ее глобальную системность, информационную связность во все времена.

Что представляется чрезвычайно жестким, по сути, невыполнимым требованием для любой рассредоточенной популяции, плотность которой не растет или растет незначительно при увеличении ее полной численности. И что уже совершенно непонятно, так это то, что относительный прирост ?N/N за время ?t неограниченно возрастает, когда численность популяции приближается к особой точке своего роста (2), рис 1.


* * *

С учетом всего сказанного следует признать, что степенной рост численности изолированной популяции не может считаться свободным и не может быть описан причинным степенным законом, т. е. законом, описывающим нелинейную ПОС между численностью и естественным приростом.

Этот рост никак не может быть вызван имманентно присущей способностью к размножению любой элементарной ячейки популяции, т. к. такой экспоненциальный рост происходит по закону геометрической прогрессии на интервалах равной длительности. Естественные, свободные, не индуцированные какой-либо управляющей системой связи между членами популяции, также никак не могут вызывать такой рост.

Но степенной рост популяций никогда и не встречается в природе. Все когда-либо существовавшие на Земле виды в условиях избытка ресурсов увеличивали свою численность по экспоненциальному, а не по степенному закону.

Это так для всех видов: от амебы до слона. Для всех – кроме человека. Исследования последнего времени показали, что численность человечества росла по гораздо более быстрому, в завершающей своей стадии, гиперболическому закону. И результаты налицо: нас в десять тысяч раз больше, чем наших ближайших родственников – человекообразных обезьян. Причина такого аномального роста не может быть объяснена, как мы только что показали, причинным законом квадратичного роста.


* * *

С.П. Капица, однако считает, что степенной причинный закон может исчерпывающе описывать рост популяции, т. е. делать это ничуть не хуже, чем закон экспоненциального роста:



«Когда рассматривается сложный, многофакторный процесс развития системы, обладающий, однако, статистической стационарностью, следует ожидать, что рост происходит динамически самоподобно. В этом случае остается неизменным пропорция между относительным изменением численности и относительным изменением времени.

Поэтому, в основе модели лежит предположение об автомодельности развития, что выражается в масштабной инвариантности, скейлинге этого процесса. Смысл этой основной гипотезы состоит в том, что утверждается постоянство относительной скорости роста системы.

Это своего рода принцип инерции развития системы, и в этом случае можно показать, что рост должен описываться степенным законом. Таким образом, исключаются экспоненциальный и логистический рост, имеющие внутренний масштаб времени – время удвоения»[94 - «Модель роста населения Земли и предвидимое будущее цивилизации»http://spkurdyumov.narod.ru/Kapitsa/Kapit.htm]. (Выделено мной. – А.М.)


Это «обоснование» применимости причинного степенного закона с простой преддетерминацией для объяснения гиперболического роста численности человечества представляется ошибочным. Автор здесь специально напускает туман, т. к. обосновать степенной рост численности населения Земли – не в состоянии.

Что означает «…процесс развития обладает статистической стационарностью»? Стационарность – это неизменность во времени; статистическая стационарность – неизменность в среднем, по вероятности. Статистическая неизменность развития Мир-системы – это, видимо, постоянство в среднем.

С.П. Капица пишет: «…следует ожидать, что рост происходит самоподобно». Но где та структура, которая остается подобной себе при циклическом сжатии исторического времени? Понятно, что здесь имеется в виду численность населения Земли, которая растет по закону геометрической прогрессии на последовательности сжимающихся по закону той же самой прогрессии циклов исторического развития.

При этом в той же пропорции в соответствии с принципом демографического императива Капицы растут и показатели развития Мир-системы. Но структуры, которая остается подобной самой себе, при таком сжатии времени – здесь нет. Поэтому все это не более, чем бессмысленный физикализм и пустая наукообразность.

Читаем далее: «…что выражается в масштабной инвариантности, скейлинге этого процесса». Но что такое масштабная инвариантность? Масштабная инвариантность, самоподобие – это свойство объектов выглядеть в любом, сколь угодно малом масштабе примерно одинаково. Продолжительность одиннадцати циклов эволюции и истории, согласно периодизации Капицы, составляет: 1.0 млн лет, 0.38, млн лет, 0.14 млн лет, 51 тыс. лет, 20 тыс. лет, 7 тыс. лет, 2.5 тыс. лет, 1 тыс. лет, 340 лет, 125 лет, 42 года.

Следовательно, если принимать его утверждение о масштабной инвариантности и самоподобии роста и развития не как метафору, а всерьез, то сжатием во времени каждой такой картины роста и развития человечества в 2.7 раза в одном цикле можно получить аналогичную картину в следующем. Ясно, что такой физикализм не имеет никакого смысла.

Степенной рост численности популяции в отличие от экспоненциального роста, как мы уже отмечали ранее, является существенно неоднородным во времени процессом. Поэтому для него не существует единого на всех этапах роста масштаба времени.

Выражается это в том, что закон степенного роста как зависимость численности от времени не содержит в себе никакой постоянной времени. Что отмечено и самим С.П. Капицей: «Таким образом, исключаются экспоненциальный и логистический рост, имеющие внутренний масштаб времени – время удвоения» [1].

Тем не менее в построениях С.П. Капицы такой масштаб времени ? = 42 года присутствует. Вводит он его при анализе демографического перехода, когда действие степенного «масштабно-инвариантного» закона заканчивается, что вполне законно, но далее, противореча собственной логике и никак того не обосновывая, применяет его вместе с константой K = 67000 и при описании гиперболического роста. На это обращает внимание А.В. Подлазов:



«Людские объединения в высшей степени масштабируемы и способны к самодостаточному существованию при численности как в десятки, так и миллионы человек. Таким образом, расщепление величины C на две константы K и ? является ошибочным и вызвано отсутствием понимания физического смысла выражения, стоящего в правой части уравнения (2)»[95 - «Теоретическая демография, как основа математической истории» http://www.keldysh.ru/papers/2000/prep73/prep2000_73.html].


Утверждение «…остается неизменной пропорция между относительным изменением численности и относительным изменением времени» есть, по сути, постулат степенной зависимости численности от времени [1].

Следовательно, вместо поиска ответа на вопрос, почему численность населения мира росла не по экспоненциальному, а по степенному закону, С.П. Капица просто постулирует такой рост. Обычно, когда хотят по-настоящему обосновать сделанный выбор – стремятся к максимальной ясности.

Здесь же все наоборот: термины, которые автор взял из неравновесной термодинамики, вместе с необходимыми частями речи собираются в предложения, из предложений складывается абзац. И полученный таким образом текст не только ничего не проясняет, но и вообще лишен всякого смысла.

Все предложенное С.П. Капицей «обоснование» применимости причинного степенного закона для объяснения гиперболического роста населения мира можно расшифровать и сократить до одного предложения:



В основе модели лежит предположение о степенной зависимости численности человеческой «популяции» от времени (просто постулируется рост человечества по степенному, причинному, самодостаточному закону, по которому не растет ни одна популяция в природе, – только и всего!), что позволяет говорить о масштабной инвариантности (неизвестно чего) и об автомодельности развития (что это означает ? не понимает никто!).



Кроме того, точно такое же «обоснование» годится и для такого «сложного, многофакторного процесса развития системы, обладающего, однако, статистической стационарностью…», как, например, рост колонии пчел или термитов.

В своих работах по теоретической демографии С.П. Капица предлагал самые разнообразные объяснения аномальному гиперболическому росту населения мира: от взаимодействия населенных пунктов с характерной численностью в 67 тыс. человек до нелокального информационного взаимодействия между членами человеческой популяции. Ответа на вопрос: в чем истинная причина роста человечества по закону гиперболы? – У него, очевидно, нет.


* * *

Если исходить из предположения о том, что гиперболический рост численности человечества был обусловлен причинным законом с простой преддетерминацией, то в уравнении роста должен присутствовать и линейный член: dN/dt = ?N + ?N


, что будет обосновано нами чуть позже. Если же такого члена нет и рост изначально предполагается гиперболическим, то мы неизбежно приходим к тем противоречиям, о которых говорили ранее.

Первые гоминиды мало отличались от своих собратьев человекообразных обезьян, живших с ними в одно и то же время и умножавших свою численность по закону Мальтуса. Поэтому логично предположить, что рост численности первых популяций рода Homo был экспоненциальным, хотя и чрезвычайно медленным.

С.П. Капица считает, что рост численности гоминид на первом этапе продолжительностью 2.8 млн лет был линейным. Во что поверить совершенно невозможно, поскольку в таком случае суммарный прирост численности популяций гоминид, предков современного человека, на протяжении 2.8 млн лет предполагается постоянным, не зависящим от их растущей численности.

А на втором этапе длительностью 1.6 млн лет он полагает, что этот рост был уже чисто гиперболическим. Почему С.П. Капица не включает линейный член в свое уравнение? Дело здесь не только в том, что в этом случае может быть нарушено соответствие с демографическими данными, указывающими на гиперболический рост.

Причина в том, что если допустить присутствие такого пусть даже и «сколь угодно малого» члена в уравнении роста, то сразу же придется распрощаться с бессмысленным самоподобием роста, его масштабной инвариантностью, а также с автомодельностью развития – понятиями характерными для физических процессов, которые описываются простыми масштабно-инвариантными законами.

Действительно, решения уравнения dN/dt = ?N + ?N


, в отличие от решений уравнения dN/dt = ?N


, имеют встроенный масштаб времени[96 - Так же как решения логистического уравнения, которое отличается только знаком второго члена.].

Тут может быть такое возражение: если членом ?N на завершающих этапах роста можно пренебречь, то для этих этапов закон роста можно считать степенным со всеми необходимыми для физикалистской интерпретации гиперболического роста следствиями.

Ответ здесь такой: учитывая, что Мир-система ни в какие времена не была единым информационном полем, а информационная связность человечества на протяжении всей человеческой истории всегда только возрастала, квадратичный член ?N


мог начать оказывать существенное влияние лишь на завершающих этапах роста, т. е. в течение последних двух-трех столетий. (На самом деле, и мы впоследствии это покажем, линейным членом нельзя пренебречь ни на каком этапе роста.)

Кроме того, не следует забывать о циклах эволюции и истории, которые вводятся в рассмотрение С.П. Капицей. Все время эволюции, начиная от момента ?1.6 млн лет, делится им на одиннадцать периодов равной (в логарифмическом масштабе) длительности с неолитом посередине.

В течение каждого такого периода, длительность которого в три раза меньше предыдущего, численность также возрастала в три раза. Но такая цикличность возможна лишь при степенном, гиперболическом росте; и если на последних циклах линейным членом может быть и можно как-то пренебречь, то рост до неолита, да и в первые несколько тысячелетий после начала неолита, когда человечество не представляло собой системы ни в каком смысле слова, сделать это, очевидно, нельзя, и рост здесь, если исходить из представления о законе роста как о ПОС между численностью и приростом, должен быть экспоненциальным.

В таком случае ни о какой цикличности роста и демографическом императиве до начала новой эры говорить не приходится. Поэтому уравнение роста с дополнительным линейным членом в правой части С.П. Капице и не подходит, поскольку находится в противоречии с принципом демографического императива и цикличностью исторического развития.


* * *

Обоснование этой цикличности – вот та проблема, которая всегда волновала С.П. Капицу. Границы циклов в первом приближении были размечены еще до него историком И.М. Дьяконовым; проблема здесь в том, почему циклов примерно 10–15 и почему они расположены на шкале исторического времени так, как расположены. В чем глубинная природа цикличности?

Показатель сжатия исторического времени (знаменатель прогрессии сжимающихся исторических циклов) С.П. Капица принимает сначала равным числу Эйлера. Его значение е = 2.718… он почему-то считает наиболее подходящей естественной мерой такого сжатия, хотя число Эйлера – основание натуральных логарифмов – в чистом виде никогда не встречается ни в одном законе естествознания.

Потом он «округляет» его до трех, хотя средний коэффициент ускорения развития мировых цивилизаций согласно, например, исследованиям академика Ю.В. Яковца равен примерно двум. Свою постоянную времени ? = 42–45 лет С.П. Капица не связывает ни с каким глобальным циклическим историческим процессом, хотя она примерно равна продолжительности, вероятно, самого главного экономического и исторического цикла – Кондратьевского цикла.

Последний цикл его периодизации по длительности также примерно равен ?, а длительность всех остальных выражается целым числом ?. Эту константу он называет временем, «…определяемым внутренней предельной способностью системы человечества и человека к развитию». Что это означает – не понимает никто.

Безразмерную константу K (Kapitsa), которая вводится вместе с ?, он определяет как главное число своей теории и в одних своих работах называет эффективным размером группы людей, а в других – аналогом числа Рейнольдса в гидродинамике. Что означают константы ? и K на самом деле – совершенно непонятно.

В девяностые годы прошлого века, когда его «феноменология» еще окончательно не закостенела и казалось, что вот-вот, еще чуть-чуть и все станет ясно, он надеялся, что каким-то чудесным образом, возможно, чисто математически – расширением области определения переменных, либо каким-то иным путем эту загадочную цикличность удастся все-таки обосновать:



«Отмеченную цикличность можно связать с тем, что Рв = К


lnt периодична в комплексной области, или же тем, что мы имеем дело с бифуркациями в более полной системе уравнений, описывающей рост» [1].


Но время шло, а проблема так и оставалась нерешенной. Спустя годы, все, что может предложить автор «Парадоксов роста» – это лишь поверхностную, механистическую аналогию:



«Хорошо известно, что умело закрученный плоский камень, брошенный под малым углом к поверхности пруда способен многократно отскакивать от воды, совершая прыжки на большое расстояние. В этом явлении мы видим, как быстрое вращение камня стабилизирует его в пространстве, несмотря на удары о поверхность воды. С другой стороны, мы видим, как в этих условиях преобразуется движение камня по инерции и образуется устойчивая периодическая серия укорачивающихся скачков, пока движение не затухнет и камень не утонет.

В этой механической модели можно усмотреть поучительные аналогии с предложенной моделью развития населения Земли, когда внутренние процессы приводят к возникновению периодических циклов, которые определяют развитие и устойчивость этого процесса. Поэтому подобные примеры, взятые из механики, помогают понять развитие такой сложной системы, как человечество, в результате которого население Земли в среднем устойчиво следует по статистически детерминированному пути автомодельного, самоподобного роста, управляемого внутренней динамикой роста, сцепленного с развитием благодаря разуму» [9].


Не находит объяснения эта цикличность и в последней попытке построить модель роста численности населения Земли с учетом пространственного распределения (авторы: Е.Н. Князева, В.А. Белавин, Е.С. Куркина)[97 - http://www.avmol51.narod.ru/Kapitsa/knjazeva_belavin_kurkina.pdf (http://www.avmol51.narod.ru/Kapitsa/knjazeva_belavin_kurkina.pdf)]. Рост численности человечества с учетом пространственного распределения безо всякого обоснования и каких-либо объяснений описывается ими с помощью уравнения диффузии или горения, которое, по их мнению, может описывать и мировой демографический процесс.


* * *

Во всех работах С.П. Капицы по теоретической демографии можно найти графики линейного, экспоненциального и гиперболического роста как возможные варианты роста численности человечества:






Рис. 3. Графики линейного, экспоненциального и гиперболического роста в работах С.П. Капицы.



Уравнения роста как причинные законы здесь схожи, но только при гиперболическом росте численность популяции устремляется к бесконечности за конечный промежуток времени, что приводит, по его мнению, к режиму с обострением, выход из которого С.П. Капица, используя терминологию термодинамики, называет фазовым переходом. В этом, считает С.П. Капица, и состоит главный секрет гиперболического роста со всеми необходимыми для его «феноменологии» физикалистскими следствиями.

Представляется совершенно недопустимым ставить в один ряд столь разные для экологии популяций законы роста, один из которых распространен повсеместно, тогда как другие два как причинные законы роста популяций – НИКОГДА не встречаются в природе.

Линейный закон, как мы уже отмечали ранее, дает постоянный, не зависящий от растущей численности прирост, что выглядит как полная несообразность. Гиперболический рост населения Земли, происходящий по причине ПОС второго порядка между численностью и мировым естественным приростом также невозможен, т. к. предполагает для рассредоточенной популяции Homo sapiens системность, которой она никогда не обладала и еще по множеству других причин, о которых мы будем говорить далее.

Экология популяций – это не физика, у нее свои законы и главный из них – закон экспоненциального роста, который, по мнению физика (!), лауреата нобелевской премии В.Л. Гинсбурга, является первым и важнейшим законом (или даже принципом) экологии популяций.

И который утверждает, что естественное состояние популяции – это рост или уменьшение по экспоненте. Это столь же важный закон для экологии популяций, как первый закон Ньютона для физики. Ни одна популяция, принадлежащая какому-либо виду из всех когда-либо существовавших в природе, не росла в соответствии со степенным законом, каузально связывающим скорость роста с численностью.

Причина здесь в особенностях нелинейного степенного роста, которые не соответствуют никакому природному репродуктивному процессу. Следовательно, причинная модель степенного роста неприменима для описания динамики изменения численности популяций.

И если численность какой-либо популяции, как, например, численность человечества растет все-таки по степенному закону, то такое возможно лишь потому, что закон, связывающий скорость роста с численностью, причинным законом в этом случае не является.




Главный закон роста численности изолированной популяции


В основе любых моделей лежат некоторые предположения. Ценность модели определяется тем, насколько ее характеристики соответствуют свойствам моделируемого объекта. Одним из самых фундаментальных предположений, лежащим в основе всех моделей роста, является предположение о пропорциональности скорости роста численности популяции – самой этой численности, будь то популяция зайцев, будь то популяция клеток.

В основе этого предположения лежит тот общеизвестный факт, что важнейшей характеристикой живых систем является их способность к размножению. Для многих одноклеточных организмов или клеток, входящих в состав клеточных тканей – это просто деление, то есть удвоение числа клеток через определенный интервал времени, называемый характерным временем деления.

Для сложно организованных растений и животных размножение происходит по более сложному закону, но в наиболее простых и адекватных моделях предполагается, что скорость размножения популяции пропорциональна численности этой популяции. Закон экспоненциального роста справедлив на определенной стадии для следующих живых систем: клеток в ткани, водорослей, бактерий в культуре, животных в популяциях.

Математическое выражение, описывающее увеличение скорости изменения величины с ростом самой этой величины, называют автокаталитическим членом (авто – само, катализ – изменение скорости реакции). Во многих популярных руководствах по экологии говорится, что экспоненциальный рост популяций возможен только в особо оптимальных условиях при отсутствии каких-либо ограничивающих факторов.

Это не совсем верно, поскольку единственное необходимое и достаточное условие такого роста – это постоянство коэффициента естественного прироста, определяющего для размножающихся организмов скорость их размножения.

Так, например, проводя серию наблюдений за ростом популяции каких-либо одноклеточных организмов в разных температурных условиях, нетрудно заметить, что с уменьшением температуры скорость деления клеток падает, но экспоненциальный характер роста сохраняется [13].

Иногда желая принизить значение экспоненциального роста популяции, авторы акцентируют внимание на его непродолжительности, на то, что он почти никогда не встречается в природе и, следовательно, может рассматриваться, по их мнению, лишь как демонстрация потенциальной возможности популяции к росту.

При этом они забывают о том, что никакая популяция так бы никогда и не появилась в природе, если бы не существовал этот важный, пусть и кратковременный, этап ее развития. Но бывают случаи, когда этот этап все длится и длится и никак не может закончиться:



«В 1859 году один фермер завез в южную часть Австралийского континента дюжину кроликов из Европы. В Австралии для них не оказалось видов-контролеров (хищников или паразитов) и численность кроликов стала расти в соответствии с экспоненциальной кривой. В итоге за 6 лет их количество достигло 22 миллионов.

К 1930 году они расселились по всему континенту, а численность их достигла 750 млн! Кролики конкурировали с овцами за корм (в итоге поголовье овец снизилось в два раза). Они лишали корма кенгуру. В начале 1950 годов удалось уничтожить 90 % кроликов, заразив их патогенным вирусом миксомы (родственником вируса оспы). Однако на этом «кроличья эпопея» в Австралии не завершилась: достаточно быстро произошел процесс формирования экотипа устойчивого к болезни, и поголовье снова начало расти» [14].


В природе, прошедшей длительный путь эволюции, мы наблюдаем самые разнообразные способы ограничения экспоненциальной экспансии размножающихся организмов. Важное значение имеют внешние воздействия на популяцию: неблагоприятные условия, конкуренты, хищники, паразиты, возбудители болезней и т. п. Но для изолированных популяций интерес представляют только те изменения, которые возникают внутри самих популяций, происходящие в ответ на рост их численности.


* * *

Распространенное представление о том, что рост популяций в благоприятных условиях ограничивается только объемом пищевых ресурсов и конкуренцией – представляется ошибочным.

Существует множество примеров, свидетельствующих о том, что все популяции: животные, растительные, бактериальные – обладают эффективными средствами, ограничивающими рост своей численности и активизирующимися задолго до того как заканчиваются пищевые ресурсы, или вступают в силу ограничения по причине конкуренции. Есть лишь редкие исключения из этого правила.

Такая саморегуляция, когда популяция ведет себя как единый живой организм, не является приобретением высших форм жизни. Она характерна для всех видов, даже бактериальных, вырабатывающих для этого целое семейство активных веществ.

Высшие организмы регулируют свою численность множеством способов, например, через паразитов в составе биоценоза, пропуском сезонов размножения или даже рассасыванием беременности [15].

Кажутся ли удивительными в таком случае парадоксальный гиперболический рост численности населения Земли и следующий за ним демографический переход, ограничивающий эту численность на некотором предельном уровне.

Рост, который никогда не зависел ни от каких ресурсов и переход, который происходит в условиях всеобщего изобилия, когда нет (в первом приближении) никаких ограничений ни в пищевых, ни в пространственных, ни в энергетических, ни в каких-либо других ресурсах.

Разве удивительно, что растущее человечество как система с помощью разнообразных появляющихся и исчезающих связей управляет своим ростом и ведет себя подобно всем другим видам и подобно Гее Лавлока, как единый живой организм?


* * *

То, что плотность популяции влияет на рост ее численности можно проверить в опытах с любыми видами организмов. Так, например, при содержании белых мышей в вольерах, когда люди следят за чистотой клеток и обеспечивают всех кормом, мыши, достигнув определенной численности, перестают размножаться.

Если перевести их в более просторную клетку, тем самым снизив число особей на квадратный метр, они продолжат размножение вновь до определенного предела. При этом меняются характер поведения мышей и отношения их между собой. Зверьки становятся беспокойными и агрессивными, и это отрицательно влияет на процесс размножения [11].

Когда взаимодействие между членами изолированной популяции отсутствует, ее рост происходит по экспоненциальному закону. Этот закон был описан в книге Роберта Мальтуса «Опыт о законе народонаселения».

В ней впервые было сформулировано положение о том, что численность популяции в благоприятных условиях растет по закону геометрической прогрессии. Сам русский термин «популяция» происходит от английского «population» – население. Мальтус был первым, кто применил математику в экологии, если не считать итальянского математика Фибоначчи.

В своей работе Мальтус четко сформулировал необходимые идеализации, без которых стала бы невозможной математическая постановка задачи: однородность и изолированность популяции, неограниченность ресурсов, постоянство коэффициентов рождаемости и смертности, отсутствие взаимодействия, способного нелинейно сказаться на приросте.

Закон Мальтуса считается первым и самым важным законом экологии популяций. Законы экологии популяций, по мнению В.Л. Гинсбурга, напоминают законы физики:



«Закон Мальтуса описывает, как растут или уменьшаются популяции, когда больше ничего не происходит. Он описывает естественное состояние популяций: как они ведут себя в отсутствие каких-либо внешних факторов (Гинзбург, Коливан 2004)». «…»

«Гинзбург (1986) заметил, что закон Мальтуса играет такую же роль в экологии, как Первый закон Ньютона в физике. До Галилея и Ньютона Аристотель утверждал, что естественным состоянием тел является покой, а движение возникает только тогда, когда к объекту приложена сила.

Господин Исаак Ньютон, однако, доказал, что верно обратное: постоянное движение является естественным состоянием, а непостоянное движение и покой возникают только тогда, когда к объекту приложена сила. Его первый закон содержит концепцию инерции, которая является «стремлением тела сопротивляться изменениям своей скорости» (Кребс 2001). Подобно первому закону Ньютона, закон Мальтуса говорит о том, что естественное состояние популяции – не покой (т. е. постоянная популяция), а движение (т. е. экспоненциальный рост или уменьшение).

И если популяции не растут или уменьшаются экспоненциально, это происходит потому, что внешняя сила (т. е. что-то в окружающей среде) изменяет уровень рождаемости и/или смертности (Гинзбург 1986, Гинзбург, Коливан 2004). Эта внешняя сила может быть как небиотическим, так и биотическим фактором как, например, «уровень межвидового заполнения» и плотность всех остальных видов в сообществе, которые могли бы взаимодействовать с основными видами (Турчин 2003)» [13].


Дадим определение экспоненциальному росту сначала для колонии микроорганизмов, где смертность отсутствует, а затем и для произвольной популяции организмов:



Экспоненциальный, естественный, обусловленный только внутренними, эндогенными, системными причинами, т. е. никак не «извне», не «изнутри» не управляемый рост численности популяции однородных размножающихся организмов – это суперпозиция множества параллельных процессов деления, размножения с постоянным коэффициентом естественного прироста по закону одной и той же прогрессии на последовательности временных интервалов постоянной длительности, равной характерному времени размножения с равномерно распределенной фазой.



Размножающуюся популяцию можно представить как объединение элементарных, независимых, далее неделимых частиц, подсистем, состоящих, к примеру, из одной бактерии или пары разнополых представителей моногамной популяции. Т. е. эта частица, атом популяции, ее элементарная составляющая – «не видит», «не чувствует» других, размножается и гибнет независимо от них по закону геометрической прогрессии, одинаковому для всех.

В более сложном случае можно допустить взаимодействие такой элементарной подсистемы с другими, но лишь такое, которое оставляет неизменным коэффициент естественного прироста вне зависимости от находящегося в системе числа «частиц». Итак, главные условия экспоненциального роста численности популяции это:



1. Неизменность состояния среды (необязательно, чтобы была строгая неизменность, вариации возможны, но лишь в тех пределах, в которых сохраняется гомеостаз организмов), в которой находится популяция, следствием чего является строгая цикличность, периодичность элементарного репродуктивного процесса во времени. Для экспоненциального роста колонии микроорганизмов, к примеру, необходима неизменность концентрации питательной смеси, ее температуры, физических полей, в которых находятся организмы, уровня радиации и т. д.



2. Независимость, отсутствие взаимовлияния процессов размножения элементарных составляющих популяции, рассредоточенной в пределах среды обитания, результатом чего является аддитивность естественного прироста (скорости роста численности) любых ее подсистем. Колонию микробов, например, можно разбить на любые части, в которых будет разное число таких микробов, и скорость роста численности этой колонии будет равна сумме скоростей роста всех ее частей. Это свойство вытекает из линейности дифференциального уравнения (1).



3. Коэффициент естественного прироста популяции ?, т. е. прирост ее численности за некоторый малый фиксированный промежуток времени, отнесенный к текущей численности, есть величина неизменная или «почти» неизменная в период роста численности.






Рис 1. Главное условие экспоненциального роста популяции заключается в постоянстве коэффициента естественного прироста.



Для популяции организмов со смертностью он равен разности между числом родившихся и числом умерших за единицу времени (Р – С), поделенную на общую численность. И число родившихся, и число умерших – случайные величины, различные по своей природе, имеющие разные математические ожидания и дисперсии и по разному меняющиеся во времени.

Коэффициент рождаемости (P/N?t) и коэффициент смертности (C/N?t) могут изменяться со временем в процессе роста популяции, но если при этом их разность будет оставаться неизменной – рост будет экспоненциальным.

Если же это условие будет нарушено – экспоненты не получится; например, если для некоторой популяции коэффициент рождаемости – константа и не зависит от численности, а коэффициент смертности пропорционален численности, то рост будет логистическим.




Обобщенный закон роста численности изолированной популяции


Каким должен быть закон свободного роста изолированной популяции в условиях среды, свойства которой не меняются и при учете взаимодействия ее членов? Будем считать выполненными все возможные идеализации, рассмотренные нами ранее. Для такой популяции прирост за счет рождаемости, так же как и убыль за счет смертности, возрастает при увеличении ее общей численности.

Поэтому в простейшем случае без учета внутривидовых взаимодействий (тех из них, что влияют на прирост численности) скорость роста должна быть пропорционально общей численности. Поскольку даже и при учете взаимодействий, если их влияние устремить к нулю, обобщенный закон роста должен превращаться в уравнение Мальтуса, то дифференциальное уравнение этого закона должно быть уравнением первого порядка.

Процесс роста численности свободной популяции, т. е. популяции, рост которой никем и никак не регулируется, не зависит (при прочих равных условиях) от того на каком участке шкалы физического времени он наблюдается. Поэтому время как независимая переменная не должно явным образом входить в состав его правой части.

Такие уравнения называются автономными. Структура правой части обобщенного закона должна иметь вид (5): линейный член ?N плюс нелинейный F(N), описывающий взаимодействие между членами популяции.






Рис. 1. Обобщенный закон свободного роста изолированной популяции.



Причем значение этой функции при N = 0 должно быть равным нулю: F(0) = 0, т. к. иначе пришлось бы допустить существование составляющей прироста, не зависящей от численности популяции. Так, например, при N = 0, т. е. при полном отсутствии членов популяции, скорость роста была бы не равна нулю. Что противоречит фундаментальному свойству жизни: живое происходит только от живого, и прирост определяется, прежде всего, численностью.

Если все же допустить присутствие аддитивной константы в правой части уравнения (5), то в простейшем случае, если отбросить линейный и нелинейный член и оставить только константу, получим закон линейного роста численности от времени, который не может описывать рост никакой свободно растущей популяции, поскольку прирост здесь является постоянным и никак не зависит от растущей численности. (Это утверждение находится в противоречии с феноменологической теорией Капицы, согласно которой скорость роста численности гоминид на первом этапе продолжительностью 2,8 млн лет была постоянной и не зависела от растущей численности.)

Если же оставить линейный член плюс константа от нелинейного – получим простейшее линейное неоднородное дифференциальное уравнение первого порядка с постоянными коэффициентами. В зависимости от знаков С и ? возможны четыре варианта роста численности.






Рис. 2. Пример простейших линейных законов, которые не могут описывать свободный рост (убывание) численности популяции.



1. Случай С > 0, ? > 0 можно интерпретировать как экспоненциальный рост популяции с учетом постоянного дополнительного прироста за счет клонирования. При этом численность популяции неограниченно возрастает.

2. Случай С < 0, ? > 0 – рост численности популяции рыб в «неограниченном» водоеме с заданной квотой отлова. Численность популяции неограниченно возрастает.

3. Для случая С > 0, ? < 0 можно предложить такую леденящую душу легенду: вымирающее человечество с отрицательным коэффициентом естественного прироста, постепенно заменяемое киборгами (инопланетянами) с тем же коэффициентом естественного прироста ? < 0, что у людей; С – число киборгов, вводимых в социум за месяц, ?N – число погибших за месяц членов социума (киборгов и людей). При приближении к асимптоте N = ?С/? «человеческая» составляющая социума устремляется к нулю.

4. Случай С < 0, ? < 0 – совсем уже печальный с N = 0 в итоге: планомерное истребление и без того уже вымирающей по естественным причинам популяции.



Все это примеры несвободного, управляемого роста популяции, т. к. в каждом из этих случаев прирост ее численности происходит не только за счет собственной способности популяции к размножению (?N?t), но и за счет сторонних (управляющих) сил, вносящих постоянный вклад в этот прирост (С?t). Следовательно, уравнение (4) не может считаться причинным законом, а при ? > 0 (т. е. в случае роста популяции) процесс роста, описываемый этим уравнением, не может быть определен как простой автокаталитический, самоускоряющийся процесс.

Итак, уравнение (4) не может служить для описания динамики свободного роста популяции каких-либо организмов из-за присутствия в его правой части аддитивной константы. В дальнейшем будем говорить только о мальтузианской составляющей, определяющей рост популяции, т. е. считаем, что ? > 0.



Согласно теореме о разложении функции в степенной ряд, любую «достаточно хорошую» функцию всегда можно в такой ряд разложить. Следовательно, нелинейный член F(N) в правой части уравнения (5) можно разложить в ряд Маклорена; при этом первый и второй член разложения должны быть равны нулю: ?


= ?


= 0, т. к. константу отбрасываем, а линейный член равен ?N, ? > 0.

Полученное уравнение с разделяющимися переменными можно проинтегрировать для каждой конкретной F(N). Отсутствие аддитивной константы в правой части приводит к тому, что она обращается в нуль при N = 0. Т. к. левая часть уравнения – это производная от численности по времени или скорость роста, то для кривой роста имеется горизонтальная асимптота, совпадающая с осью времени, т. е. такая же асимптота, как у экспоненты.

Это хороший показатель, он говорит о том, что рост численности популяции, определяемый обобщенным законом роста в его идеальном описании с непрерывной численностью, не имеет начала. Если бы рост начинался в некоторый фиксированный момент времени, пришлось бы давать какое-то объяснение выделенности этого момента, как, например, при описании степенного параболического роста.

Кроме того, очень важно понимать то, что линейным членом ?N в обобщенном уравнении роста (5) пренебречь нельзя в принципе. Перечислим причины, почему это так:



1. Т. к. разложение F(N) начинается с квадратичного члена, то F(N)/?N ? 0 при N ? 0, откуда следует, что при небольшой численности рост описывается линейным уравнением Мальтуса, является экспоненциальным и не зависит в первом приближении от взаимодействий между членами популяции. Т. е. получается правильная асимптотика.



2. Если отбросить линейный член ?N, оставить только F(N) и считать, например, что F(N) = ?


N


, ?


= 0, j ? i, т. е. все члены разложения кроме одного равны нулю, как в уравнении Капицы, то получаем причинный закон степенного роста, согласно которому, как мы показали ранее, не растет ни одна популяция в природе. Если же в разложении F(N) присутствует более одного члена, а функция F(N) является монотонной, что соответствует любому реально возможному росту изолированной популяции, то и в этом случае можно показать, что рост будет аналогичен степенному со всеми теми противоречиями, которые были рассмотрены нами ранее.



3. Согласно первому закону экологии популяций, все популяции в неизменных, благоприятных внешних условиях и при отсутствии взаимодействий – растут экспоненциально. Взаимодействия могут замедлить или ускорить этот экспоненциальный рост, но полностью отменить его они не могут. Если взять, к примеру, размножающееся человечество, то это, прежде всего, биологический вид, такой же как и множество других видов, когда-либо существовавших в природе, умножающий численность своих популяций по закону Мальтуса; и только затем его можно рассматривать как совокупность существ с множеством изученных и неизученных социальных связей, влияющих на всё и вся, в том числе и на мировой естественный прирост. (По закону Мальтуса могла расти численность популяций первых архантропов и отдельных народов в историческое время, когда была выполнена третья из обозначенных нами идеализаций об однородности популяции.)



Важным следствием обобщенного закона является уравнение (6): зависимость коэффициента естественного прироста ?N/N?t (среднего прироста численности на особь популяции за единицу времени) от полной численности этой популяции.

Эта зависимость может существовать только в том случае, если популяция представляет собой систему взаимодействующих особей, что возможно для сосредоточенной популяции с небольшим по площади ареалом обитания или для пространственно-рассредоточенной, но объединенной единым информационным полем Мир-системы растущего человечества.

Что полностью отвечает тем идеализациям, которые изначально закладывались в обобщенную модель. И что, несомненно, значительно снижает ее эвристическую ценность. (Учет «распространения» в пространстве особей (информации) приводит к необходимости построения моделей второго типа, основанных на уравнениях типа диффузия-кинетика, т. е. к гораздо более сложной математике.)

Для рассредоточенной популяции животных и для человеческого сообщества это условие представляется слишком жестким и вряд ли может быть в реальности выполнено, т. к. размер ареала обитания популяции может в сотни раз превосходить расстояние, которое особь проходит за время своей жизни. Кроме того, «сильно рассредоточенную» в пространстве популяцию вряд ли вообще можно считать популяцией по определению. Здесь может оказаться нарушенной главная из принятых идеализаций: одинаковые и неизменные внешние условия для всех ее частей.

Разные части такой популяции могут в таком случае размножаться в разных природно-климатических условиях, иметь различные коэффициенты прироста и считаться отдельными популяциями. А все человечество в целом вообще не представляло собой единое информационное поле ни в какие времена, исключая, возможно, последние два-три столетия.

Вывод здесь такой: обобщенный причинный закон (5) как закон нелинейного роста имеет ограниченное применение и годится лишь для описания временно?й динамики изменения численности сосредоточенной, изолированной популяции [12].

Наибольшую общность закону (5) можно придать, добавив в его правую часть дельта функцию Дирака (7), которая описывает акт творения или случайное зарождение жизни в первобытном океане Земли. Это «обобщение», впрочем, не следует воспринимать слишком серьезно.




Частные случаи общего закона


Если взаимодействия между членами популяции отсутствуют и коэффициент естественного прироста равен нулю, т. е., если убрать в правой части уравнения (5) и линейный, и нелинейный член, то получим уравнение (7), в котором разность между числом родившихся и умерших за единицу времени (Р – С)/?t равна нулю (т. е. прирост за счет рождений равен убыли за счет смертности), и численность популяции остается неизменной.

В более сложном случае при ? ? 0 и наличии взаимодействий популяционный гомеостаз (N = const) достигается при тех значениях N, которые обращают правую часть уравнения (5) в нуль. Нелинейный член может быть немонотонной функцией численности, и тогда рост будет более сложным. Устойчивый гомеостаз, когда численность популяции остается неизменной или слабо колеблется около положения равновесия, возможен в тех точках гомеостаза, в которых вторая производная от правой части уравнения (5) – отрицательна [11].






Рис. 1. Состояние популяционного гомеостаза.



Экспоненциальный рост возникает при отсутствии взаимодействий между членами популяции, способных оказать влияние на естественный прирост (он был рассмотрен нами ранее). В этом случае в обобщенном уравнении (5) необходимо отбросить нелинейный член F(N).






Рис. 2. Экспоненциальный рост популяции.



Если для некоторой популяции коэффициент рождаемости есть величина постоянная и не зависит от численности, а коэффициент смертности пропорционален численности, то рост будет логистическим (9). Логистический рост был впервые описан бельгийским математиком Ферхюльстом на примере роста численности населения. Уравнение такого роста – уравнение Ферхюльста – сам Ферхюльст по неизвестным причинам назвал логистическим.






Рис. 3. Логистический рост популяции.



Модель логистического роста, основанная на предположении об убывающей линейной зависимости удельной скорости популяционного роста от численности популяции, является наиболее простой из существующих моделей ограниченного роста.

В этом ее несомненное достоинство. Но берется она, по сути, с потолка, т. к. уравнение (9) никак не вытекает из каких-либо особенностей размножения и гибели организмов. Этим она отличается от модели естественного экспоненциального роста, которая полностью прозрачна и не содержит никаких искусственных допущений. Поэтому реальная S-образная кривая роста популяции может сильно отличаться от логистической кривой.



«Предположение о линейной зависимости скорости роста популяции от ее плотности (основное условие логистического роста) Ф. Смит (Smith, 1963) проверил экспериментально на лабораторной популяции рачка Daphnia magna. Увеличивая объем сосуда с питательной средой, в котором содержались дафнии, Ф. Смит в течение некоторого времени поддерживал плотность растущей популяции на одном уровне.

Определив таким образом при разных плотностях значения удельной скорости популяционного роста, Ф. Смит построил по экспериментальным данным график, отражающий взаимосвязь данных величин. В соответствии с логистической моделью ожидалось, что этот график будет прямой линией, однако на самом деле получилась кривая, т. е. при низкой плотности популяция росла быстрее, чем это было бы при линейной зависимости, а при высокой – медленнее. Учтя эти данные и соответствующим образом модифицировав уравнение, Смит добился гораздо лучшего соответствия модели результатам эксперимента» [16].


В случае, когда нелинейный член F(N) = ?N


f(N) представляет собой монотонную функцию можно говорить об обобщенном логистическом росте (9A). Такое уравнение называют иногда обобщенным уравнением роста Ричардса (Richards, Карманова, Иванилова, 1971) и используют для описания роста как отдельных организмов, так и популяций в целом [13].






Рис. 4. Обобщенное уравнение логистического роста популяции.



Какими качествами должны обладать организмы, чтобы рост их популяций описывался логистической или обобщенной логистической моделью?



1. Во-первых, при возрастании численности (плотности) популяции должна возрастать вероятность их гибели и/или снижаться вероятность оставить потомство.



2. Во-вторых, реакция этих организмов на возрастание численности (плотности), проявляющаяся в снижении рождаемости и/или увеличении смертности, должна осуществляться без запаздывания, иначе говоря, она должна быть значительно меньше времени жизни отдельной особи этой популяции, т. е. быть практически мгновенной.



Ни один из реально существующих видов таким свойством (по крайней мере вторым свойством), очевидно, не обладает. И лучше всего этой модели соответствует рост простейших или бактерий, размножающихся в условиях конкуренции за пищевые ресурсы в среде, объем которой ограничен.

Суть логистической модели заключается в том, что на начальной стадии роста, при малой численности, в правой части уравнения роста доминирует линейный член, и рост является экспоненциальным.

По мере увеличения численности постепенно начинает сказываться присутствие квадратичного (нелинейного) члена, и численность устойчивым образом устремляется к некоторому предельному значению, величина которого зависит как от линейного, так и от нелинейного члена. Здесь важно то, что линейным членом в правой части логистического уравнения, в отличие от нелинейного, пренебречь нельзя ни на каком этапе роста.

Если поменять знак второго члена логистического уравнения с минуса на плюс получим некий антипод логистического роста, когда взаимодействия между членами популяции способствуют, а не препятствуют приросту ее численности.

Экспоненциальный рост, также справедливый здесь на начальном этапе, плавно переходит затем в гиперболический. (Еще раз подчеркнем, что речь здесь идет только о причинных законах роста!) Ни одна популяция в природе, в том числе и популяция Homo sapiens, как мы это сейчас покажем, по такому закону никогда не росла.

Более того, функция F(N) = ?N


f(N), входящая в обобщенный причинный закон роста, для всякой свободно растущей в естественных природных условиях изолированной популяции должна быть, по-видимому, монотонно убывающей, принимающей лишь отрицательные значения функцией.

Это так, поскольку связи между членами популяции, описываемые нелинейным членом F(N), определяют борьбу за территорию и/или ресурсы и всегда отрицательно сказываются на приросте ее численности. Такие связи не могут ускорить ее естественный экспоненциальный рост, а могут лишь его замедлить.

Исключением из этого правила могла бы стать популяция Homo sapiens: единственная популяция в природе, представители которой обладают сознанием. Однако рост населения Земли не может быть описан обобщенным причинным законом (5) с положительным нелинейным членом.

Действительно, «чисто» гиперболический рост населения мира, который, собственно, и был доказан в работах Фёрстера и Капицы, возможен лишь в том случае, если в разложении F(N) оставить только положительный квадратичный член ?


N


, а линейным членом ?N – пренебречь.






Рис. 5. Уравнение экспоненциального роста, переходящего в гиперболический, согласно которому не растет ни одна популяция в природе.



Но пренебречь членом ?N для растущей популяции Homo sapiens нельзя из принципиальных соображений, поскольку человек всегда размножался так же, как и любой другой биологический вид, прежде всего, по закону Мальтуса: естественный прирост пропорционален численности. (По закону Мальтуса могла расти численность популяций первых архантропов и отдельных народов в историческое время, когда была выполнена третья из обозначенных нами идеализаций об однородности популяции.)



Примером модели, уравнение которой в правой своей части не содержит линейного члена, может служить модель Подлазова, описывающая рост численности населения Земли. Эту модель мы рассмотрим в главе «Мифы теоретической демографии».




Рис. 6. Уравнение Подлазова, не содержащее члена ?N. Может рассматриваться как регрессионная зависимость, т. е. как формула, описывающая связь между численностью и скоростью ее роста и не претендующая на описание причинно-следственных отношений между ними [52].



Положительный нелинейный член ?


N


, отвечающий за «прогрессивные» взаимодействия между членами человеческой «популяции», мог лишь ускорить этот рост, но абсолютно доминировать при любой численности и на всех этапах роста он не мог ни при каких обстоятельствах.

Иначе говоря, для того, чтобы рост был «чисто» гиперболическим на всех этапах роста, он должен был определяться на всех этих этапах только связями, взаимодействиями между членами популяции. Причем не просто определяться: необходимо, чтобы связи описывались на всех этих этапах единственным и неизменным членом ?


N


, стоящим в правой части уравнения роста с постоянным коэффициентом ?


, не зависящим от растущей численности.

При этом нужно учесть, что такое уравнение роста как причинный закон описывает простейшую нелинейную ПОС, т. е. неустойчивый итеративный процесс, приводящий, тем не менее, по каким-то непонятным причинам к устойчивому гиперболическому росту.

В такое невозможно поверить еще и потому, что ничто не может отменить животной составляющей природы человека. Люди вовсе не роботы передающие, принимающие, перерабатывающие информацию и размножающиеся лишь благодаря коллективному взаимодействию Капицы. Составляющая прироста за счет рождаемости возникает по причине естественного человеческого желания иметь детей, глубоко «зашитого» в подсознании человека. Если бы это было не так – не было бы и тех семи с лишнем миллиардов людей, которые живут ныне на планете Земля.

Действительно, и это трудно себе представить, что с тех пор, как первый архантроп два миллиона лет тому назад перешел к прямохождению, стал пользоваться орудиями труда и проявил первые признаки разумности – сменилось 100000 (сто тысяч!) поколений.

И на протяжении всего этого бесконечно долгого пути эволюции наши предки никогда «не забывали» о необходимости обзавестись потомством. (О жизнесберегающих технологиях, во все времена уменьшавших смертность и также влиявших на рост популяции, говорить здесь не будем.) И размножались они лишь благодаря какому-то коллективному взаимодействию? Можно ли в такое поверить! С.П. Капица о гиперболическом росте населения Земли (выделено мной. – А.М.):



«… Первые открытия принадлежат английскому антропологу Лики. В дальнейшем крупный вклад был сделан французской экспедицией, которой руководил Коппен, исследовавший раннюю эпоху становления человечества. Именно тогда начался гиперболический рост численности населения нашей планеты. (1,6 млн лет тому назад.) С тех пор эта численность увеличивалась прямо пропорционально квадрату населения мира вплоть до нашего времени, когда для гиперболического роста скорость обратно пропорциональна квадрату времени. Медленная в начале, по мере роста населения скорость все увеличивается и в итоге происходит быстрее, чем по экспоненте, устремляясь в бесконечность, в конечное время, равное Т


= 2025 г.

Экспоненциальный рост предполагает только индивидуальную способность человека к размножению, которая не зависит от остальных людей. Поэтому в невзаимодействующей популяции экспоненциальный рост не зависит от суммарного населения, и в принципе рост определяется временем удвоения. Однако согласно новому пониманию роста человечества рост происходит в результате коллективного механизма умножения нашей численности. Причины этого могут быть разными, однако мы увидим, как коллективный механизм делает их эффективными факторами роста в масштабе всего человечества» [9].


Можно предвидеть следующее возражение: коллективное взаимодействие лишь сделало возможным этот чрезвычайно медленный рост численности наших далеких предков, продолжавшийся сотни тысяч лет, рост, согласно которому не растут никакие популяции животных. И благодаря которому на момент начала неолита, т. е. спустя примерно 1,7 млн лет после его начала, численность человечества возросла от ста тысяч до нескольких миллионов.

Это была лишь небольшая добавка в уравнение роста, которой бы не было, не будь коллективного взаимодействия, а был бы обычный экспоненциальный, а затем логистический рост и гомеостаз с неизменной численностью в финале, определяемой существующими ООС, каким растут популяции животных того же класса, что и человек, и численность которых никогда не превышает примерно ста тысяч.

В том то и дело, что это не так. Утверждая, что гиперболический рост человечества начался 1,6 млн лет тому назад, С.П. Капица фактически отбрасывает линейный член ?N в уравнении (5), а от нелинейного оставляет лишь ту составляющую, которая отвечает за прогрессивные, способствующие росту численности взаимодействия. Следовательно, ничего похожего на логистический, а затем, благодаря коллективному взаимодействию и антилогистический рост здесь не получается, и весь естественный прирост, а не какая-то прибавка к нему, возникает у него лишь благодаря влиянию (прямому или косвенному) коллективного взаимодействия.

Но первые гоминиды мало чем отличались от человекообразных обезьян, и считать рост численности их популяций сначала линейным (?4,4 млн лет, ?1,6 млн лет), а затем гиперболическим (?1,6 млн лет, 1960 год), происходившим лишь за счет связей, взаимодействий между членами популяций, как полагает С.П. Капица, – представляется ошибочным.




Краткие выводы


Какие из всего этого должны быть сделаны выводы? Т. к. мальтузианской составляющей естественного прироста пренебречь нельзя ни на каком этапе роста человеческой «популяции», рост ее, очевидно, не мог быть гиперболическим. Поскольку, как показывают многочисленные исследования, – это все-таки не так, необходимо признать, что дифференциальный закон, связывающий скорость роста и численность населения Земли, не может считаться законом причинным. И в соответствии с причинным законом dN/dt = N


/C не растет ни одна популяция в природе.

Как ни странно, точно такой же вывод можно было бы сделать и в том случае, если бы выяснилось, что численность населения Земли с начала новой эры до 1960 года росла с хорошей точностью не гиперболически, а экспоненциально. Дело в том, что на историческом этапе своего развития, особенно последние два столетия, человечество не было какой-то одной популяцией вида Homo sapiens sapiens, а представляло скорее конгломерат популяций, образованный различными как по численности, так и по естественному приросту составляющими (коэффициент естественного прироста в разные времена, для разных народов мог различаться в разы, поэтому никакое его усреднение по всей массе человечества не может считаться приемлемым).

Поэтому по закону Мальтуса могли расти лишь отдельные страны или народы такие, как Америка в период освоения территорий. И даже если допустить, что численность каждого народа, этноса будет расти экспоненциально – из этого вовсе не следует, по изложенным выше соображениям (сумма экспонент с отличающимися коэффициентами прироста не может быть сведена к одной экспоненте), что численность человечества тоже будет расти экспоненциально. Вывод был бы точно таким же, как и в случае гиперболического роста: учитывая чрезвычайную простоту полученного закона и неизменное для всего человечества время удвоения численности, его нельзя было бы считать причинным законом, а сам рост автокаталитическим, самоускоряющимся процессом.



Причины аномального гиперболического роста численности населения Земли заключаются, по-видимому, в многочисленных возникающих и исчезающих управляющих связях, которыми был охвачен социум во все времена. И, поскольку связи с такими парадоксальными свойствами, приводящие к простейшему из возможных гиперболическому росту, не могли возникать и поддерживаться спонтанно, сами по себе, то, очевидно, что они должны были обеспечиваться во все времена некой управляющей системой. И гиперболический рост населения Земли есть в таком случае рост «вынужденный», управляемый.

Если же исключить существование реальной управляющей системы, стоящей над популяцией, а  сам термин «управляющая система» понимать только как метафору, можно предположить, что для авангардных систем универсальной эволюции должен существовать некий принцип, подобный принципу наименьшего действия в физике. Суть его в том, что всякая авангардная система, подчиняющаяся известным физическим законам, способна еще и к опережающему отражению действительности. Но не в обычном его понимании, когда это отражение не более, чем способность системы, используя накопленный опыт, оптимально реагировать на текущие задачи. А в смысле фейнмановского интеграла по траекториям, когда электрон движется сразу по всем возможным путям и обнаруживает себя в том или ином месте в соответствии с распределением их вероятностей.

Цель всякой авангардной системы эволюции – достичь очередного промежуточного, а затем и Абсолютного Финала. (Причем будущее (и даже отдаленное будущее) каким-то непостижимым образом может оказывать влияния на настоящее.) Движение в этом направлении – случайный, но постоянно подправляемый процесс с установкой к достижению промежуточных ранжированных целей. Дойдя до очередной промежуточной станции, госпожа Эволюция просматривает все возможные пути до следующей и случайным образом выбирает один из тех, что гарантированно приведет ее к Абсолютного Финалу.



В нашей модели причина гиперболического роста заключена в эквифинальном, плановом – по циклам Кондратьева – росте биниальной иерархической сети четвертого ранга. Рост популяций любых представителей животного мира, согласно нашей гипотезе, сопровождают сети, ранг которых не превышает трех. (Ранг сетей, связанных с человекообразными обезьянами, возможно, равен четырем, но эти сети автономны и не объединяются в растущую до пятого ранга сеть, подобную Сети человека.)

И в этом, по нашему мнению, состоит качественное отличие между любым представителем земной фауны и человеком. Поскольку уровень развития носителя связан с рангом и размером сопровождающей эволюцию сети, то на вопрос о том, есть ли сознание у животных, существует простой и ясный ответ: да, животные обладают сознанием, но независимо от сложности «аппаратной базы» (человекообразные обезьяны, дельфины, слоны), которая может даже превышать таковую человека, это сознание качественно отличается от сознания человека, поскольку сети, связанные с их популяциями, имеют меньший ранг и не объединяются в иерархическую сеть более высокого ранга. (Не объединяются по той причине, что лидер уже существует и этот лидер должен быть один.)

Сеть третьего ранга содержит 256 узлов, сеть четвертого ранга – 65536, но сколько бы ни существовало таких автономных сетей они никак не могут сравниться с растущей сетью четвертого и тем более с сетью пятого ранга. Популяции домашних животных, единственные популяции высших животных в природе (не считая человека), численность которых может составлять десятки и даже сотни миллионов особей, связаны с автономными сетями низших рангов, поэтому сознание их представителей также несопоставимо с сознанием человека.




Мифы теоретической демографии





Введение


Это критическое исследование касается работ А.В. Коротаева, А.В. Подлазова и С.П. Капицы, некоторых других исследователей, посвященных гиперболическому росту населения Земли и демографическому переходу. Говорить мы будем в основном о работах А.В. Коротаева, написанных как самостоятельно, так и в соавторстве с А.С. Малковым, Н.Л. Комаровой, Д.А. Халтуриной и ориентироваться на его последнюю по времени книгу «Гиперболический рост в живой природе и обществе», написанную совместно с А.В. Марковым [8].

Все статьи и книги Коротаева по данной теме вышли после работ С.П. Капицы, С.В. Циреля и А.В. Подлазова. Работы С.П. Капицы были первыми. Был предложен принцип демографического императива, открыто явление сжатия исторического времени, введены фундаментальные постоянные роста.

А.В. Подлазов и С.В. Цирель опубликовали свои статьи после работ С.П. Капицы. Причины, по которым они были написаны, заключались, во-первых, в неприятии основных положений теории Капицы и, во-вторых, в возможности легкого продвижения в новом междисциплинарном направлении.

Возможность эта, как показало время, оказалась иллюзорной, т. к. никакого развития их идеи так и не получили. Тем не менее работа А.В. Подлазова содержит серьезные достижения. Так, им вводится важное понятие жизнесберегающих технологий, ставшее ныне общепринятым, и выводится «основное уравнение теоретической демографии» Подлазова, имеющее для нового междисциплинарного направления определенное значение. Чего не скажешь об отвлеченных построениях С.В. Циреля, где демонстрируется совершенно бездумный, чисто формальный подход; по сути, – это голая математика.

Что же касается работ А.В. Коротаева и соавторов по гиперболическому росту и демографическому переходу, то это самое, на наш взгляд, пустое, лишенное всякой математической культуры, логики, научной честности и эстетической привлекательности исследование. Каждый пункт этой нелестной характеристики будет нами подробно обоснован в процессе изложения материала[11 - Такое описание его «трудов» очень не по душе Коротаеву: его холуи по приказу хозяина пытались взломать мой e-mail и мои аккаунты в Google и Twitter.].


* * *

В июне 2010 года вышла книга С.П. Капицы по теоретической демографии, в которой он в очередной раз представил почти без всяких изменений вариант своей теории от 1996 года. Книга, объемом с брошюру, вышла в твердом переплете с портретом автора на обложке. Название такое: «Парадоксы роста. Законы развития человечества».

Открыты законы развития человечества… Но так ли это? Что же на самом деле открыл физик Капица? На самом деле – и мы здесь это докажем – физическая демография профессора Капицы дает неверный ответ даже на главный вопрос теоретической демографии о причине гиперболического роста численности населения мира.

Уравнение Капицы, описывающее, по мнению его первооткрывателя, «коллективное взаимодействие», причинным законом не является и все попытки понять природу гиперболического роста, основанные на этом уравнении как на причинном законе, теряют всякий смысл.

Принцип демографического императива как причинный закон, предложенный С.П. Капицей, – еще одно его заблуждение. А физикалистское описание гиперболического роста населения Земли и демографического перехода как режима с обострением и фазового перехода – не имеет под собой никаких оснований.


* * *

Для понимания изложенного здесь материала достаточно математического образования в пределах десяти классов средней школы, но было бы неплохо, чтобы читатель был знаком с основами математического анализа.

Порядок чтения имеет значение: последующее зависит от предыдущего. Параграф «Классификация теорий…» должен быть прочитан обязательно. В то же время какие-то абзацы, формулы, таблицы в процессе чтения – можно опускать. Необязательно добиваться полного понимания.

Дело в том, что целью нашего исследования является доказательство ошибочности представления о том, что причиной гиперболического роста населения Земли была положительная обратная связь второго порядка между численностью и скоростью ее роста (текущей численностью населения Земли и мировым годовым естественным приростом).

Иначе говоря, все, что мы хотим доказать, так это то, что закон квадратичного роста, связывающий численность населения Земли со скоростью ее роста, не может считаться причинным законом, описывающим автокаталитический, самоускоряющийся процесс, а представляет собой всего лишь непричинную (не ПОС) функциональную связь между численностью и ежегодным мировым естественным приростом[12 - Закон квадратичного роста считается важнейшим законом теоретической демографии. В соответствии с этим законом (в интерпретации его как закона причинного) скорость роста численности населения мира в течение многих тысяч лет росла по причине ее пропорциональности квадрату этой численности.].

Доказательство наше избыточно и какие-то его пункты могут быть пропущены без существенного ущерба для понимания материала в целом. Почему закон квадратичного роста не может претендовать на роль причинного закона и все существующие теории роста, в том числе теории Капицы, Коротаева и Подлазова, основанные на этом законе как на причинном, должны подать в отставку, вы сможете узнать, прочтя эту главу.

Наше исследование в электронном виде (в формате fb2) по форме гипертекст, поэтому можно сразу же начать с самого важного параграфа: «Миф о том, что закон квадратичного роста вызывает гиперболический рост численности» (#litres_trial_promo), снабженного всеми необходимыми для понимания ссылками.


* * *

Дополнительно хотелось бы отметить, что все обозначенные нами работы, посвященные гиперболическому росту и демографическому переходу, лежат в русле нового междисциплинарного направления, созданного исследованиями С.П. Капицы.

Это направление, которое обычно причисляют к теоретической демографии, не является тем не менее каким-либо разделом обычной демографии, а также истории, социологии, экономики, эволюционной биологии… Так что специалисты всех этих наук могут не беспокоиться по поводу захода на их территорию известных или даже никому не известных дилетантов.

С другой стороны, попытки этих представителей как-то выразить свое мнение: полемика между М. Клуптом и Ю. Шишковым, с одной стороны, и А. Вишневским и С. Капицей с другой, критическая заметка Ю. Шишкова про пироги и сапоги, статья А. Вишневского о «гипотезе гиперболического роста» – совершенно не приветствуется, т. к. это дилетантизм уже с их стороны.



Критика Шишкова совершенно правильная, плохо только то, что он даже не пытается как-то по иному интерпретировать уравнение Капицы, т. е. с водой здесь выплескивается и ребенок. Неприятие же Вишневским теории Капицы связано с его непониманием того, что эта теория описывает в первую очередь не мировой демографический процесс, а эволюцию человечества как системы. Но все это совсем неудивительно: вряд ли экономист Шишков и демограф Вишневский могут понять физика Капицу.



По нашему глубокому убеждению, работы С.П. Капицы, других исследователей, посвященные гиперболическому росту и демографическому переходу, – это не просто какие-то новые теории роста численности населения мира, а первый шаг в направлении смены существующей парадигмы, возможно даже, – это прелюдия к новой теории эволюции.



«Открытие закона роста человечества с точки зрения ряда исследователей эквивалентно по своей фундаментальности открытию независимости скорости света от движения источника в опытах Майкельсона. А. Эйнштейн построил на этой основе специальную теорию относительности…» С.П. Курдюмов, Е.Н. Князева.


Прежде чем приступать к критике дадим классификацию возможных теорий роста численности населения Земли.




Классификация теорий гиперболического роста населения Земли


Главная задача всякой теории, претендующей на объяснение какого-либо нового явления, заключается в нахождении причин, по которым это явление происходит. Что значит найти причину (причины) гиперболического роста численности населения мира? – Это значит найти объективно существующую причинную связь, определяющую некий теоретический закон, в результате непрерывного действия которого и возникает зависимость, открытая Фёрстером и его коллегами.

Как известно, законы делятся на эмпирические и теоретические. Эмпирическими принято называть законы, основанные на наблюдениях или экспериментах. Обычно открытию эмпирического закона предшествуют многочисленные наблюдения или эксперименты. В данном случае – это не так, т. к. рост населения Земли явление уникальное и неповторимое.

Эмпирические законы устанавливают лишь функциональную связь между свойствами системы, но не объясняют почему она существует. Так, закон Бойля – Мариотта определяет, что давление газа обратно пропорционально его объему, но не объясняет причину этой зависимости. Чтобы понять природу эмпирической зависимости и, следовательно, объяснить эмпирический закон приходится обращаться к теоретическому закону, который часто называют законом о ненаблюдаемых объектах.

Для объяснения закона Бойля – Мариотта нужно было обратиться к законам молекулярно-кинетической теории, которые опираются на представление о существовании и движении таких мельчайших частиц вещества как молекулы.

Для объяснения противоречащего закону всемирного тяготения аномально быстрого вращения внешних областей галактик пришлось вводить ненаблюдаемый объект непонятной природы: темную материю, обладающую скрытой массой, величина которой в пять раз превышает массу наблюдаемой барионной материи.

Для объяснения парадоксального гиперболического роста населения Земли может не хватить известных биологических, экономических и социальных законов и придется вводить ненаблюдаемый объект: растущую иерархическую сеть непонятной природы, связанную с каждым из членов социума.


* * *

Искомый теоретический причинный закон должен описывать процесс, протекающий во времени. Это процесс роста численности «популяции» Homo sapiens, который выражается в виде зависимости ее численности от времени N(t). Закон, который может быть сформулирован с помощью некоторых условий, например, в форме какого-то уравнения, что, впрочем, необязательно. Если исходить из самых общих представлений, то в поиске такого закона может быть намечено два подхода:



1. Первый подход – редукционистский на основе наук о человеке и обществе? социологических, демографических, экономических, исторических. В этом случае закон ищется в форме связи, основанной на причинной преддетерминации, когда каждое текущее состояние системы полностью определяется ее предшествующими состояниями. Причем обычно наибольшую роль играют близко отстоящие по времени, т. е. непосредственно предшествующие события.



2. Второй подход – целевой, телеологический, когда на место причинной преддетерминации встает причинная постдетерминация, при которой развитие системы подчинено определённой цели.



Кроме того, по форме этот закон может быть динамическим или статистическим (вероятностным), дифференциальным (если представлен в виде дифференциального уравнения или системы) или не дифференциальным, когда для задания причинной связи между переменными, описывающими процесс, не нужно обращаться к бесконечно малым их приращениям.



Все мыслимые модели гиперболического роста населения Земли и демографического перехода, как завершающего этапа этого роста, можно разделить на три типа:



1. ПРОСТЫЕ РЕДУКЦИОНИСТСКИЕ МОДЕЛИ.

2. СЛОЖНЫЕ СИНЕРГЕТИЧЕСКИЕ МОДЕЛИ.

3. ТЕЛЕОЛОГИЧЕСКИЕ МОДЕЛИ.



Первый тип соответствует моделям, где применяется глобальный подход и рассматривается единая система «все человечество в целом», в которой нет разделения людей, составляющих в сумме главный показатель роста – численность населения Земли – по половому, возрастному, расовому, этническому и другим признакам.

Модели такого типа предельно просты и кроме главной переменной, численности, могут иметь вспомогательные в виде каких-то других показателей развития. При этом – и это следует подчеркнуть – каждая из этих переменных зависит только от численности или от скорости ее роста и не зависит ни от чего другого.

Кроме того, все эти модели основаны на простой причинной связи с преддетерминацией, когда причиной прироста численности в любой момент времени выступают события, непосредственно ему предшествующие.

За счет чего происходит рост численности населения мира? За счет естественного прироста, который равен, как известно, разности между числом родившихся и числом умерших за один год или за какой-то другой небольшой промежуток времени. Множество причин, определяющих естественный прирост, зависит от страны, времени, социального развития, культурных традиций и других факторов, влияющих на этот прирост.

В наше время большое значение имеет прогресс в области общественного здравоохранения, санитарии и гигиены, повышение доступности продовольствия, расширения и развития торговли и транспорта, введение в эксплуатацию новых источников энергии, комплекс мер, направленных на борьбу с пьянством, алкоголизмом и наркоманией, успехи геронтологии, снижение детской смертности и т. д. Ясно, что этот список не имеет конца.

Рост популяции микроорганизмов, размножающихся делением, в каждый момент времени определяется ее полной численностью. То же можно сказать и о человеческой «популяции»: численность – это главный показатель роста и растет она по причине полового размножения. Для популяции животных главную роль здесь играет количество половозрелых самок. Для человеческого общества все неизмеримо сложнее.

Составляющая естественного прироста за счет рождаемости значительно меньше полной численности. Она не возникает из ниоткуда, а появляется в результате, если можно так выразиться, «репликации» некоторых из живущих особей. Этим процесс роста численности людей отличается, например, от процесса размножения нейтронов в цепной ядерной реакции. И именно поэтому естественный прирост есть небольшое приращение, зависящее, прежде всего, от общего числа живущих.

Модели первого типа можно считать однофакторными или однопричинными. Из множества всех существующих причин роста в каждой такой модели выделяется по тому или иному признаку подмножество, которое объявляется главной, доминирующей причиной прироста, а остальными причинами – пренебрегается.

Так, в мальтузианских моделях, где главная причина роста – это ресурсы, они и объявляются его единственной причиной. При этом считается, что выделенная моделью причина воздействуют не на отдельные страны и народы, а на все человечество в целом. Т. е. закон роста представляет собой зависимость между численностью всего человечества и какими-то другими переменными.

В моделях первого типа эта зависимость выражается в виде дифференциального уравнения или системы уравнений, связывающих (причем связь эта причинно-следственная) скорость роста с численностью. (Годовой мировой естественный прирост равен скорости роста численности.)

Если скорость роста пропорциональна численности – рост будет экспоненциальным. Если же она пропорциональна квадрату численности (такая зависимость называется законом квадратичного роста) – рост будет гиперболическим.








Рис. 1. Закон квадратичного роста. Скорость роста численности населения мира пропорциональна квадрату численности.



Решения уравнения или системы в однопричинной модели определяются начальными условиями. Одним из таких решений, удовлетворяющим условию N(t


) = N


, будет теоретическая гипербола. И здесь должно быть полное согласие теории и «эксперимента»: теоретической гиперболы и гиперболы Фёрстера.

Почти все существующие теории роста населения Земли – теории первого типа. Рост численности здесь полностью определяется законом квадратичного роста. Т. е. считается, что опосредованная причинная связь между естественным приростом и численностью, механизм которой для каждой модели свой, является главной, доминирующей и достаточной для объяснения роста.


* * *

Второй тип – это модели, математический аппарат которых нелинейные дифференциальные или функционально-дифференциальные уравнения в частных производных, причем во втором случае составленные с учетом не только настоящего состояния объекта, но и всей его предыстории. В таких моделях должна исследоваться динамика роста популяции не только во времени, но и в пространстве, учитываться продолжительность жизни, показатель фертильности, какие-то другие переменные.

Главное отличие моделей второго типа от первого, где человечество единая, однородная, неделимая система в том, что здесь эта система сначала разбивается на некоторое число частей или подсистем, различающихся по тем или иным признакам, и исследуется рост и развитие каждой из таких частей в отдельности. И лишь затем численность народонаселения каждой такой части суммируется с другими частями, в результате чего и получается теоретическая зависимость численности населения мира от времени.

Что гораздо лучше соответствует действительности, т. к. парадоксальная системность человечества, необходимая для построения любой модели первого типа, представляется совершенно невероятной. Гиперболический рост населения Земли в таких синергетических моделях, если они когда-нибудь будут построены, будет описываться как режим с обострением.



Режим с обострением – это такой закон роста, при котором одна или несколько моделируемых величин обращаются в бесконечность за конечный промежуток времени. Формируется в результате действия механизма нелинейной положительной обратной связи.



Численность населения мира будет здесь ведущей переменной и после упрощающих предположений, в асимптотике, по мнению тех, кто считает, что гиперболический рост может быть объяснен на основе синергетики, должен проявиться удивительный по своей простоте закон, открытый Фёрстером. (Модели второго типа должны также объяснить явление сжатия исторического времени: исторические циклы, длительность которых сокращается по закону прогрессии, о существовании которых писал историк И.М. Дьяконов.)

При этом предполагается, что рост хотя и идет по случайной гиперболе, должен существовать механизм устойчивости, который каким-то образом возвращает ведущую переменную на изначальную кривую или, по крайней мере, не слишком далеко от нее уводит. Ни одна из попыток построить модель второго типа так и не увенчалась успехом. См., например, [10]. Есть и откровенная подгонка под результаты феноменологической теории Капицы, авторы: Е.Н. Князева, В.А. Белавин, Е.С. Куркина, которая никак не может считаться адекватной моделью второго типа[13 - http://www.avmol51.narod.ru/Kapitsa/knjazeva_belavin_kurkina.pdf].

Вероятно, подход к этой проблеме на основе теории самоорганизации с использованием методов синергетики является предвзятым и в принципе неверным[14 - См. «Миф о том, что синергетика может объяснить гиперболический рост населения Земли».]. В любом случае множество моделей второго типа остается пока пустым.


* * *

Модели третьего типа основаны на телеологической детерминации или постдетерминации. Такой тип детерминации предполагает наличие у процесса, в данном случае процесса роста численности населения мира, какой-то цели. Этот рост численности считается важнейшим, если не главным фактором, определяющим рост и развитие ноосферы, высшей стадии эволюции биосферы.

Существует ли ноосфера как система в том смысле, в каком существует Гея Лавлока? Применимы ли к ней законы нижних уровней? А может быть так же, как в концепции Геи, в ее «сильном», телеологическом варианте ноосфера как самодетерминирующаяся, причинно-активная система определяет не только свою структуру, но и направление собственной эволюции?

Любая модель третьего типа формально может быть сведена к модели первого типа, если считать рост многофакторным или многопричинным.






Рис. 2. Причинно-следственная диаграмма однопричинной и многопричинной модели роста.



В случае многопричинной модели естественный прирост также определяется, прежде всего, общей численностью, но в отличие от однопричинного варианта на него могут влиять абсолютно все возможные и, вообще говоря, случайные причины; случайные лишь в системе координат, связанной с процессами, протекающими внутри демографической системы.

При наличии же внешней управляющей системы (реальной или виртуальной) множество причин, влияющих на рост, можно разбить на два подмножества: действительно случайные причины и причины, лишь кажущиеся случайными, а на самом деле направляющие рост на гиперболу Фёрстера. Т. е. здесь мы имеем дело с управляемым случайным процессом. (Возможна такая аналогия: переход парусного судна из одного порта в другой, происходящий в условиях случайно меняющихся по направлению и скорости атмосферных течений. Управляющей системой здесь будут штурман и капитан.)

Иначе говоря, множество этих причин будет максимально по?лно и никак не структурировано. Причем все они необязательно должны быть связаны с общим числом живущих. Такой подход хорошо согласуется с представлением о том, что человечество никогда не было единым информационным полем и не представляло собой системы, способной обеспечить гиперболический рост своей численности.

Оно всегда, особенно в прошедшие исторические эпохи, было разобщено, прежде всего, территориально, и рост каждого этноса, народа происходил в основном независимо от других. А естественный прирост каждой составляющей человечества как системы, т. е. каждого этноса, народа, страны (другого подмножества, выделенного по принципу общности какого-либо из его свойств) не зависел совсем или зависел слабо от общей численности населения Земли и определялся, прежде всего, своими собственными причинами.

При этом в сумме общее число живущих на интервалах, длительность которых превышает продолжительность человеческой жизни, росло по гиперболическому закону.

Существует единственная модель третьего типа, в которой гиперболический рост и демографический переход объясняются эквифинальностью главного цикла эволюции, порождающего Кондратьевский цикл. Ниже мы рассмотрим ее в качестве примера модели роста, основанной на целевой постдетерминации.


* * *

Закон гиперболического роста удивительно прост и потому даже сложная модель второго типа обязана иметь асимптотическое решение в виде модели первого или третьего типа. И модель эта должна быть либо однопричинной, либо многопричинной – третьего не дано.

Парадокс заключается в том, что выбор здесь происходит между невероятным и невозможным. Дилеммы можно избежать, если вообще отрицать факт гиперболического роста численности населения мира. И считать, что рост был экспоненциальным или несколько более крутым – «надэкспоненциальным». Как ни странно, такой позиции до сих придерживаются многие демографы и не только демографы, но и другие ученые, представители смежных наук[15 - См. «Миф о том, что население Земли не росло по закону гиперболы».].

Одни вообще ничего не слышали про гиперболический рост, другие считают исследование Фёрстера и его коллег ошибочным, третьи пытаются объяснить рост населения Земли на основе теории Мальтуса. Рост численности по экспоненте полностью отвечает существующей на данный момент научной парадигме, в то время как признание его гиперболическим требует, по-видимому, коренной ее ломки.

Есть еще одна возможность избавиться от неудобного, никак не вписывающегося в существующую парадигму закона Фёрстера: исказить его. Эту возможность использует историк-востоковед А.В. Коротаев, подменяя в своих работах понятие «закон гиперболического роста», подразумевающее точность, значимость и незыблемость на понятие «гиперболический тренд» (текущая тенденция), которое ассоциируется с непостоянством и неустойчивостью.

Соавтор Коротаева по ряду работ, С.В. Цирель, идет другим путем: им совершенно бездоказательно утверждается, что население мира росло по закону гиперболы лишь в XVIII–XX веках, т. е. только последние три столетия.

Сколь бы странным это ни показалось, но, возможно, незнание, отрицание или даже искажение открытия Фёрстера и есть наилучший на данный момент выбор. Во всяком случае – это лучше, чем выбирать между невероятным и невозможным.


* * *

Все существующие однопричинные модели гиперболического роста имеют целый букет врожденных пороков. Это и неизменный в течение тысячелетий закон роста, это и непонятная системность человечества, связанная с простотой и нелинейностью уравнения (1), это и парадоксальная, необъяснимая законом dN/dt = N


/C устойчивость роста. Кроме того, все они построены практически по одной и той же схеме:

Все авторы, кроме С.П. Капицы, на основании соединительных (конъюнктивных) суждений типа: А~В?А~С ? А~В*С или с использованием силлогизма получают дифференциальную форму dN/dt = N


/C или несколько более сложную, которую и объявляют причинным законом роста численности человечества. Поверить в то, что одна из множества таких противоречивых, умозрительных, ничем не подтвержденных моделей может объяснить гиперболический рост – значит поверить в невозможное.



Все модели первого типа можно разбить на три класса:



1. К первому следует отнести те из них, в которых предлагается не только конкретный механизм реализации закона квадратичного роста dN/dt = N


/C или какого-либо другого более сложного причинного дифференциального закона, описывающего рост, но и способ его реализации. А также поднимается проблема устойчивости роста, без решения которой подобные построения лишены всякого смысла.



2. Ко второму классу относятся модели, в которых рассматривается конкретный механизм реализации закона dN/dt = N


/C, но не делается никаких серьезных попыток понять как такой механизм мог привести к гиперболическому росту населения мира. Проблема устойчивости роста в них игнорируется.



3. В моделях третьего класса нет, по сути, ничего кроме математических уравнений, т. е. это голая математика (где нет решения проблемы устойчивости роста), единственное назначение которой дать полное согласие с «экспериментальными данными», т. е. с гиперболой Фёрстера.



К первому классу относится теория Капицы. Автор предлагает модель коллективного взаимодействия; разрабатывается, а затем отвергается целый ряд чисто умозрительных способов ее реализации. Сначала рассматривается «модель взаимодействия городов»: населенных пунктов с численностью K = 67 тыс. человек, затем модель распространения информации по схеме цепной реакции, и, наконец, в качестве причины, способной объяснить парадоксальную системность человечества, предлагается нелокальное (!) взаимодействие.

Автор честно отмечает нерешенность проблемы устойчивости роста в рамках своей модели. (В последней своей работе [9] С.П. Капица приходит к выводу, что причину аномального гиперболического роста искать вообще не нужно: вполне достаточно его «феноменологии»…)



Модель Коротаева служит хорошим примером гипотезы, в которой предлагается конкретный механизм роста, но не делается никаких серьезных попыток понять, как такой механизм мог работать в пространстве и во времени на территории Мир-системы.

И, наконец, последний член этого ряда – модели полностью оторванные от реальности и представляющие собой, по сути, какие-то бессмысленные математические игры. Примером такого «творчества» может служить работа С.В. Циреля[16 - http://eclectic.ss.uci.edu/SF/artTsirel.pdf], в которой гиперболический рост населения Земли представляется переходным между нулевым и экспоненциальным.


* * *

В многопричинной модели причины роста меняются со временем, они различны для разных стран, народов и регионов, численность населения которых в сумме составляет численность человечества. При этом считается, что рост населения мира процесс хотя и случайный, но направленный к определенной цели и на временах бо?льших, чем некоторое характерное время является гиперболическим.

Такое свойство растущей системы «все человечество в целом» достигать в реперных точках своего роста предустановленных значений численности и следовать во все времена одной и той же гиперболе демографического роста называется эквифинальностью. Именно оно обеспечивает выполнение в среднем закона квадратичного роста, который причинным законом в многопричинной модели уже не является, а представляет собой функциональную, непричинную (не ПОС) связь между численностью и скоростью ее роста.

Многопричинная модель равносильна модели третьего типа с постдетерминацией и поверить в такой механизм гиперболического роста, противоречащий всем существующим представлениям о росте численности популяции, – значит поверить в невероятное.


Причинные и непричинные законы

Для дальнейшего нам понадобится классификация законов по способу их детерминации. Законы по типу детерминации подразделяются на причинные и непричинные. Существуют два типа причинных (каузальных) законов: с преддетерминацией, когда время детерминации некоторого события предшествует времени его наступления, и с постдетерминацией, когда момент детерминации расположен позднее того момента времени, в который происходит это событие.

Во многих контекстах причинный закон отождествляется с законом, основанном на преддетерминации. Вместе с тем понятие закона с постдетерминацией, которая может быть также названа телеологической или целевой детерминацией, необходимо при описании целого ряда биологических, экономических, социальных, кибернетических объектов и систем.

Как причинные, так и непричинные законы можно разделить на функциональные законы и законы корреляции. Функциональный закон вне зависимости от его каузальной интерпретации определим здесь как такой закон, который описывает связь, при которой каждому значению одной переменной, входящей в уравнение закона, соответствует одно или несколько строго определенных значений другой.

Это определение отличается от часто встречающегося определения, отождествляющего по способу детерминации функциональную связь с сопутствующей. Дело в том, что важную для данного изложения связь между естественным приростом и численностью всегда можно назвать по форме функциональной, а по способу детерминации – причинной или непричинной (сопутствующей).

Корреляционный закон – это такой закон, при котором с изменением переменной X меняется и переменная Y, но каждому значению X могут соответствовать разные, заранее непредсказуемые значения Y, и наоборот. Корреляционный закон описывает на языке теории вероятностей коррелятивную связь между явлениями или процессами, причем в отличие от функционального закона, связь эта остается целиком или частично невыясненной.

Причинный закон описывает причинно-следственную (каузальную) связь. Непричинный закон – это закон, выражающий коррелятивную или функциональную непричинную связь. Если наступление события А увеличивает вероятность наступления события В, то между ними существует причинно-следственная (причинная, каузальная) связь.

Определение причинного закона дает Бертран Рассел в своей книге «Человеческое познание, его сферы и границы»:



«Причинный закон, как я буду употреблять этот термин, может быть определен как главный принцип, в силу которого – если имеются достаточные данные об определенной области пространства-времени – можно сделать какой-то вывод об определенной другой области пространства-времени».


Сопутствующая связь – это вид коррелятивной или функциональной непричинной связи, при которой изменение одного из связанных объектов сопутствует во времени изменению другого. Именно сопутствует, сопровождается, а не «причиняется». Сопутствующая связь – это связь сосуществования и одновременности. Это связь синхронных, в первом приближении не взаимодействующих процессов.

Объекты, находящиеся между собой в непричинном взаимодействии, связаны причинно (каузально) лишь в том смысле, что являются производными одного и того же основания. Т. е. существует общее для них явление-причина.


* * *

Один из способов находить причинные связи – изучение функциональных зависимостей. Так, для понимания причин, вследствие которых изменяется сопротивление проводника, оказалось достаточным найти функциональную зависимость между проводимостью и температурой. В непричинной связи объектов отсутствуют как таковые главные признаки причинно-следственной связи: производительность (объекты не производят друг друга), асимметричность во времени (они сосуществуют равноправно, симметрично во времени), необратимость.

В случае сопутствующей связи часто имеет место обратимость, т. е. возможность перестановки местами независимых переменных. Функциональный (не каузальный) подход особенно важен, когда предметом изучения являются процессы, внутренний причинный механизм которых пока неизвестен и выступает как своего рода черный ящик.



Примеры:

A. Свободно падающее тело: связь между мгновенным значением скорости и пройденным путем. Связь причинная, асимметричная S ? V.

B. Связь между шириной зоны разброса дроби и расстоянием до цели: связь функциональная, сопутствующая; позволяет определять это расстояние по результатам исследования мишени.

C. Связь между энергопотреблением и численностью. Мировое энергопотребление пропорционально квадрату численности населения мира, но рост численности не есть причина роста энергопотребления. А рост энергопотребления не есть причина роста численности. Процессы эти сопутствующие и связь между ними сопутствующая, коррелятивная (в первом приближении, т. к. явления эти высшей степени сложности), а не причинно-следственная. Такая же связь, как мы покажем в дальнейшем, существует между численностью населения мира и скоростью ее роста (годовым естественным приростом).


* * *

Когда мы хотим объяснить какое-то явление, нам приходится ставить вопрос о его причине и искать причинно-следственную, каузальную связь. Проблема анализа причинности – одна из вечных проблем философии, которой философы занимаются на протяжении многих тысяч лет. Ею интересовался еще Аристотель, а статьи, посвященные причинности, до сих пор можно встретить на страницах современных философских журналов.

Хотя понятия причина и следствие обычно относятся к событиям, происходящим в пространственно-временном континууме, понятие событие в каузальном анализе можно заменить на понятие процесс, свойство, переменную. В точных науках исследуется связь между переменными, входящими в математическую зависимость, выражающую некоторый закон. Рассмотрим две переменные, описывающие некоторые свойства системы как функции времени: x(t) и y(t). Про связь между этими переменными y(x) можно сказать следующее:





Конец ознакомительного фрагмента. Получить полную версию книги.


Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию (https://www.litres.ru/pages/biblio_book/?art=66664138) на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.



notes


Примечания





2


https://www.youtube.com/watch?v=PcwCJHT4Onk (https://www.youtube.com/watch?v=PcwCJHT4Onk)




3


Foerster, Mora, and Amiot 1960.




4


Компьютерра № 27–28 от 1 августа 2007 года.




11


Такое описание его «трудов» очень не по душе Коротаеву: его холуи по приказу хозяина пытались взломать мой e-mail и мои аккаунты в Google и Twitter.




12


Закон квадратичного роста считается важнейшим законом теоретической демографии. В соответствии с этим законом (в интерпретации его как закона причинного) скорость роста численности населения мира в течение многих тысяч лет росла по причине ее пропорциональности квадрату этой численности.




13


http://www.avmol51.narod.ru/Kapitsa/knjazeva_belavin_kurkina.pdf




14


См. «Миф о том, что синергетика может объяснить гиперболический рост населения Земли».




15


См. «Миф о том, что население Земли не росло по закону гиперболы».




16


http://eclectic.ss.uci.edu/SF/artTsirel.pdf




91


См. «Кризис планетарного цикла А.Д. Панова – отменяется!».




92


Для дальнейшего представляется важным отметить, что население Земли в целом, при том, что все мы принадлежим к одному виду, – этому условию не удовлетворяет. Дело в том, что человечество нельзя считать однородной массой с единым для всех ее частей естественным приростом. В действительности – это конгломерат популяций, образованный различными как по численности, так и по естественному приросту составляющими. (Коэффициент естественного прироста в разные времена, для разных народов мог различаться в разы, поэтому никакое его усреднение по всей массе человечества не может считаться удовлетворительным.) Даже если допустить, что численность каждого народа, этноса будет расти экспоненциально – из этого вовсе не следует, что численность человечества также будет расти экспоненциально.




93


Плодовитость может расти, смертность падать, но почему закон, по которому это происходит, именно такой, какой он есть и почему этот закон остается неизменным в течение длительного промежутка времени?




94


«Модель роста населения Земли и предвидимое будущее цивилизации»

http://spkurdyumov.narod.ru/Kapitsa/Kapit.htm




95


«Теоретическая демография, как основа математической истории» http://www.keldysh.ru/papers/2000/prep73/prep2000_73.html




96


Так же как решения логистического уравнения, которое отличается только знаком второго члена.




97


http://www.avmol51.narod.ru/Kapitsa/knjazeva_belavin_kurkina.pdf (http://www.avmol51.narod.ru/Kapitsa/knjazeva_belavin_kurkina.pdf)



Если текст книги отсутствует, перейдите по ссылке

Возможные причины отсутствия книги:
1. Книга снята с продаж по просьбе правообладателя
2. Книга ещё не поступила в продажу и пока недоступна для чтения

Навигация